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Abstract

A mechanism is a specification for the determination of economic decisions based

on the information that is known by the individuals within the economy. Mecha-

nism design is the discipline of designing mechanisms that lead to socially desirable

outcomes in a context in which individuals are self-interested. Traditionally, mech-

anism design has focused on static settings in which the individuals (participants)

are known to the mechanism prior to any decision being made. However, many

real environments are dynamic, such as in a stock exchange where participants are

arriving and departing at different times, and existing solutions for static settings

are inappropriate.

Although mechanism design for dynamic settings has gained the attention of many

researchers over the past decade, most of them have focused on one-sided dynamic

market models; that is, either the supply or the demand of the market is dynamic,

but not both. Online double auctions, in which the dynamics are two-sided, rep-

resent the dominant type of exchange market, but only limited studies have been

conducted for online double auctions, due to the complexity of the dynamics. In

order to address this gap, this thesis attacks the design problem in two types of

online double auction: one type is decision-independent, where each trader’s pri-

vate information (that is, type) is observed independently and therefore cannot

be changed by the decisions of the auction, and the other is decision-dependent,

where each trader’s private information depends on other traders and also varies

in response to the decisions of the auction.

For the first type, this thesis studies a model in which each trader participates

(or is active) in the market for only one period of time and the trader’s valuation

does not change during this period. First, it provides a computationally efficient

optimal (offline) solution that is truthful, efficient and individually rational. This

optimal solution is one kind of Vickrey-Clarke-Groves (VCG) mechanism, but it

is computationally more efficient than the classical VCG mechanism. Apart from
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serving the online double auction design, this VCG mechanism also provides a

dedicated solution for real trading environments such as futures exchanges. Next,

it proposes a reduction framework within which to build an online/dynamic double

auction by reducing it to an online one-sided auction. This reduction framework

is notable because (1) well-studied online one-sided auctions can be easily reused,

and (2) the key properties of the reduced online double auction match those of the

online one-sided auction, which is very difficult even for static double auctions. In

addition, this thesis shows that in this model it is impossible to design a determin-

istic online double auction that is truthful, individually rational and competitive

for efficiency, although it shows that this is possible under certain assumptions.

The second type is approached by means of two steps. First, the double auction

design problem is studied in an environment in which traders’ valuations vary

with respect to the number of units they trade, but without consideration for the

dynamic nature of arrivals and departures. This environment can be mapped to

the tremendously growing online shopping model, which leverages group buying,

and in this thesis it is modelled as a multi-unit double auction. The thesis pro-

vides new insights (impossibilities and possibilities) into the design of multi-unit

double auctions under group buying. In particular, it demonstrates that there

are no budget-balanced, individually rational and truthful allocations that can

guarantee a reasonable transaction size. In the second step, a more complex dy-

namic environment is envisaged, in which traders dynamically arrive and depart

and their valuations change over time. This environment can be mapped to real

stock exchanges. Since the models of traders in this kind of environment have

been well studied in economics, this thesis addresses the auction design problem

directly, based on these well-studied models. However, because traders’ types are

dependent on each other as well as on the decisions of the auction, a good auction

also needs to learn traders’ behaviours in order to make appropriate decisions in

different environments. To that end, an auction design framework based on trader

behaviours is developed. This framework demonstrates how auctions can be de-

signed to analyse market dynamics (or trader behaviours) and then use trader

behaviours to guide market decisions such that desirable resource allocations are

achievable by, for example, attracting more good traders to return to the market

in the future.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Many Dynamic Environments Require Better Solu-

tions

A mechanism is a specification for the determination of economic decisions based

on the information that is known by the individuals within the economy [My-

erson, 2008a]. Mechanism design is the discipline of designing mechanisms (or

information games) that lead to socially desirable outcomes in a context in which

individuals are self-interested, and hold private information (which is known as

type). Participants of a mechanism are asked to report their private information

to the mechanism which selects an outcome that satisfies some properties.

Traditionally, mechanism design has focused on static settings in which all pri-

vate information required for future decisions is known to the mechanism (or the

decision-maker) at the start, and normally decisions are made at a single point

in time. For instance, the Vickrey auction is designed for static environments,

where there is one item for sale, each buyer submits his or her willing payment

1
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(or valuation) for the item and the buyer who is willing to pay the highest price is

awarded the right to purchase the item at the price offered by the second-highest

bidder [Vickrey, 1961]. The Vickrey auction requires that all buyers have to be

available at a specific time so that the auctioneer is able to collect sufficient in-

formation for its decision-making, otherwise the desired properties of the auction

will not hold. However, auctions in many environments are dynamic; for exam-

ple, at the New York Stock Exchange participants are arriving and departing at

varying times and the market owner (or the mechanism) has to make a sequence

of decisions over time rather than at a single point in time.

1.1.2 Existing Solutions are NOT Sufficient

Since there are many environments are dynamic, mechanism design for dynamic

environments is necessary. Additionally, existing solutions for static settings are

insufficient in dynamic environments. For instance, a seller is selling a house, and

each buyer comes at a different time with a willing payment to buy the house

and a waiting period during which the seller has to decide whether or not to sell

the house to this buyer. In this situation, the Vickrey auction does not work

properly, because the seller does not know if the willing payment of a buyer is the

highest until all buyers have arrived. Unfortunately, the seller also cannot wait

until all buyers have arrived, as the buyer with highest willing payment might have

already left at that time. Apart from the challenge posed by the uncertainty about

participants, the decision-making of a mechanism in a dynamic environment is also

challenged by participants’ strategical play with their arrival and departure; for

example, a participant available/arriving at time t1 might not report to the market

until t2 > t1 if it is in his or her interest to do so. Existing solutions for static

settings cannot handle this kind of manipulation considering the dynamic nature

of arrivals and departures. Moreover, the private information of participants in a
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dynamic environment might change over time and therefore, locally best solutions

from a static auction’s point of view might not optimal over time.

1.1.3 Online Double Auction Design is More Challenging

An environment is dynamic if its participants are arriving and departing over

time [Parkes, 2007], the valuation of each participant is changing over time [Berge-

mann and Välimäki, 2010, Cavallo and Parkes, 2008], or both [Cavallo et al.,

2009]. Mechanism design for dynamic environments has gained the attention of

many researchers over the past decade, but most of them have focused on one-

sided dynamic market models; that is, either the supply or the demand of the

market is dynamic, but not both [Parkes, 2007]. The house selling example in

the previous section is the case in which only the demand is dynamic. When we

consider a situation in which both supply and demand are dynamic, we normally

talk about online double auction where multiple sellers and multiple buyers trade

a commodity at any time they wish. An online double auction has to match sellers

and buyers dynamically and calculate a payment for each matched trader without

the knowledge of traders/orders coming afterwards; that is, without the benefit of

hindsight about future traders and/or types. Such uncertainty is more challenging

for double auction design because the modelling of traders’ bidding behaviour in

double auctions is ‘immensely complicated’ even in a static case [McAfee, 1992].

This is because both buyers and sellers are playing strategically in double auctions

and the auctioneer (or the market owner) has no control of either side. Due to the

complexity of the dynamics, only limited studies have been conducted for online

double auctions [Blum et al., 2006, Bredin et al., 2007]. However, online double

auction markets represent the dominant type of exchange market, and traders’ ma-

nipulations are highly critical in an online double auction market. Thus a robust

mechanism that can prevent traders’ manipulations and quickly adapt to market

changes is a desirable property for an online double auction market.
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1.2 Methodologies

This section presents some basic and major approaches used in online mechanism

design and, in particular, three new approaches are proposed.

Without knowing who will arrive or what will happen after a decision has been

made, it is very difficult for a mechanism/algorithm to make decisions that satisfy

some overall goals such as efficiency (that is, maximising social welfare). To under-

stand the difficulty, let us consider a simple example of ranking a set of numbers in

an online fashion; that is, the numbers come one by one and on the arrival of each

number a final position has to be assigned to this number without knowing what

numbers will come afterwards. It is evident that there is no (online) ranking algo-

rithm that can guarantee that the outcome is a proper ranking. The algorithms

designed to solve this kind of online problem are called online algorithms.

In general, certain goals achievable in a static trading environment cannot be

achieved in a corresponding online case, because of, for example, the uncertainty

about traders who have not yet arrived. Therefore, in order to measure the per-

formance of an online algorithm/auction, we need to compare the result of an

online auction with the optimal (offline) solution. The optimal solution is the best

solution with regard to the goals an auction can achieve, given that all future

inputs are known to the auction before it makes any decision; that is, there is no

uncertainty about the information required for the decision-making. This kind of

performance comparison is known as competitive analysis [Borodin and El-Yaniv,

1998].

1.2.1 Proposed Approaches

Apart from the above basic online algorithm design techniques, I propose three

additional approaches for (online) double auction design in this thesis.
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1. Reduction: this approach reduces an online double auction to an online one-

sided auction. The main idea of this approach is treating sellers as the same

as buyers, to let sellers compete with buyers to gain their commodity back

if their valuations are competitive.

2. Behaviour-based auction design: the main idea of this approach is to use

decisions to control or guide the behaviour of participants. Given this control

to an online auction, the auction will be able to predict/control the dynamics

of the future and therefore more desirable allocations will be achieved.

3. Augmentation techniques from graph theory : the advantage of this approach

is that the computational complexity is significantly reduced when compared

to the traditional approaches. This approach will be used to design a com-

putationally efficient double auction to compute the optimal offline solution

for an online double auction.

1.2.2 Existing Approaches

It is worth mentioning other major approaches that have been used in the literature

below.

One of them is the use of accessible prior knowledge of the dynamics. Prior

knowledge reduces the complexity of the dynamics to some extent. For exam-

ple, for one-sided dynamic environments, secretary-problem-based online auctions

assume that traders arrive randomly [Buchbinder et al., 2010, Hajiaghayi et al.,

2004, Kleinberg, 2005]. Another example of online double auctions, assumed that

the valuations of traders are limited to a certain range, Blum et al. [2006] proposed

a truthful online double auction for efficiency in an adversarial setting. Moreover,

given that the length of each trader’s active time is no more than some constant,

Bredin et al. [2007] designed a framework to construct truthful online double auc-

tions from truthful static double auctions, and demonstrated the performance
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(with regard to efficiency) through experiments of the auctions provided by the

framework in probabilistic settings .

Another approach is online learning. For example, Blum et al. [2003] demon-

strated that through online learning, new auctions substantially improve upon the

performance of previous auctions for this problem. Hajiaghayi et al. [2004] used

learning to design adaptive limited-supply online auctions based on the secretary

problem. Parkes and Duong [2007] and Constantin and Parkes [2009] proposed

adaptive online auctions, based on online algorithms for stochastic optimisation,

by cancelling allocation decisions violating certain properties, such as truthfulness.

Many other approaches have been used; for example, computational difficulty

is used as a barrier against manipulations of participants (e.g. [Conitzer and

Sandholm, 2007]). They are not listed exhaustively here.

1.3 Major Contributions

Apart from the proposed approaches, the contributions of this thesis can be

grouped into three categories: static, approaching online and online. Overall, all

the contributions mainly serve online double auction design. The ‘static’ category

attacks the auction design problem in simple static environments. The ‘approach-

ing online’ category contains solutions for complex static environments in which

the complexity of the auction design is approaching the design difficulty in the cor-

responding online environments. The ‘online’ category tackles the design problem

in complex dynamic environments.
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• Static:

– I propose an allocation/matching algorithm, called maximal

matching, to maximise market liquidity for single-unit double

auctions. Maximal matching not only maximises the transaction size,

but also shows computational advantage compared with other similar

algorithms from the graph theory literature. This algorithm also serves

as one of the main components for the behaviour-based online double

auction design in the third category.

• Approaching online:

– I design a computationally efficient VCG mechanism for bi-

lateral trading environments with temporal constraints, using

augmentation techniques from graph theory. The key advantage

of this auction is that it is computationally faster than the classical

solution found in the literature. Apart from serving in computing the

optimal (offline) solution of one of the online double auctions proposed

in the third category, this mechanism also provides a dedicated solution

for real trading environments such as futures exchange.

– I show the impossibilities of designing certain desirable mech-

anisms in a group buying online shopping environment, and

also provide promising positive results related to these im-

possibilities. In particular, no budget-balanced, individually rational

and truthful allocations with a reasonable transaction size are present

in this environment. In addition to these negative results, I also show

promising positive results with budget-balanced, individually rational

and truthful or partially truthful mechanisms. These new insights (im-

possibilities and possibilities) for the design of double auctions under

group buying will help us to discover better solutions for the problem.
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• Online:

– I propose a reduction framework within which to build online

double auctions by reducing them to online one-sided auctions.

Well-studied online one-sided auctions can be easily reused in the reduc-

tion framework. More importantly, the properties of the reduced online

double auction match those of the online one-sided auction, which is

difficult to achieve even for static double auctions. In addition, the

impossibility of designing a deterministic online double auction that is

truthful, individually rational and competitive for efficiency is proved.

– I develop a behaviour-based online double auction design ap-

proach for a more complicated dynamic environment that sim-

ulates real bilateral trading environments. The novelty of this

approach is that it learns traders’ behaviour models to guide market

decisions so that the auction is able to control/predict the dynamics.

To that end, the proposed auction will be able to attract more good

traders and make more efficient allocations, which is the hallmark of

the success of a real exchange market. The advantage of this approach

has been demonstrated through the world-wide market design compe-

titions.

1.4 Related Work

Both one-sided auctions and double auctions involve three different roles: supply

(seller(s)), demand (buyer(s)) and the auctioneer (or the market owner). Depend-

ing on the causes of the dynamics, online market models are categorised into three

different groups here. In the rest of this section, these categories are listed and

the main results related to each category.
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1.4.1 Static Demand and Dynamic Supply

In this category, the dynamics/uncertainty comes from the supply side. For ex-

ample, an Ad auction with a fixed number of traders/advertisers, but without

knowing how many search queries will come over time [Babaioff et al., 2010, Mah-

dian and Saberi, 2006].

The model studied by Mahdian and Saberi [2006] is one where there is a fixed

number of buyers (advertisers), each of whom bids for the same keyword and only

requires one unit, and where the number of incoming searches with that keyword

is unknown/dynamic. The goal is to find a single-priced auction to maximise

the seller’s revenue. The auction is constrained such that each incoming search

of the keyword must be assigned to a buyer, otherwise ignored; that is, it can-

not be sold in the future. The price for each winning buyer is fixed until all

queries have arrived. Mahdian and Saberi proposed two non-deterministic online

algorithms. One is 4-competitive1 to maximise revenue but without considering

incentive compatibility, and the other is an extension of the first one with consid-

eration of incentive compatibility, which achieves at least a constant fraction of

the optimal revenue. More complicated models of Ad auctions have also been ex-

amined, considering multi-unit, multi-keywords or budget constraint (for example,

[Mehta et al., 2007]).

1.4.2 Dynamic Demand and Static Supply

On the contrary, in this category the uncertainty is caused by demand. A seller,

for instance, has a fixed number of identical items to sell to dynamic arriving

and departing buyers; that is, they come over time and also leave the market at

different time points.

14-competitive means that the online auction achieves a revenue at least 1

4
of the optimal

revenue, where 4 is the competitive ratio.
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There are two types of this category that are widely studied. One is secretary-

problem-based auctions [Babaioff et al., 2008, Hajiaghayi et al., 2004, Kleinberg,

2005], where the supply is limited and also known, and it is the number of items

or positions available. The challenge in the classical secretary problem is finding

the optimal stopping rule to hire the candidate with the highest quality from n

candidates who arrive randomly one after another. The other is unlimited supply

auctions, such as digital goods [Bar-Yossef et al., 2002, Blum and Hartline, 2005].

The goal is to find the optimal number of items to sell given that buyers arrive

and leave at different time points.

Note that an online auction with reusable goods or pre-scheduled availability of the

goods also belongs to this category, which is a special case of secretary-problem-

based auctions, for example, [Hajiaghayi, 2005]. Although the supply in this case is

not completely fixed or available at the beginning, it is predictable. For example, a

fixed number of items is available for sale in each discrete time point t ∈ {1, 2, ..., T}

and they cannot be sold in the future, like ice-cream. Another example of reusable

goods is internet bandwidth; if a reusable commodity is available and the auction

does not allocate it to anyone, then it is wasted. Thus, the total number of items

available for sale is known, though they might not be available all the time.

1.4.3 Dynamic Demand and Dynamic Supply

Market models in this category are the most complex dynamic models with respect

to the complexity of the uncertainty. For example, in the dynamic double auctions

studied in [Blum et al., 2006, Bredin et al., 2007], the auctioneer is neither a

buyer nor a seller, while in all the models introduced above, the auctioneer is

either the buyer or the seller. This category is not a simple combination of the

above two categories and results from the above two categories cannot be directly

applied here. In terms of truthfulness, for example, both buyers and sellers play
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strategically in this category, while normally only one side plays strategically in

the other two categories.

1.5 Outline of Chapters

Chapter 2 introduces the basic concepts and goals/desiderata of double auction

design and the models of both static and dynamic/online double auctions.

Chapter 3 shows the essential allocation/matching algorithms for both static and

online double auctions, including the proposed maximal matching.

Chapter 4 initiates the study of online double auctions by adding temporal con-

straints into trader types without considering the effect of the uncertainty (which

is fully examined in Chapters 6 and 7). By utilising augmentation techniques

from graph theory, the computational complexity of the classical VCG mechanism

is significantly reduced in this model. It shows that the proposed mechanism is

O(n) times faster, given n that is the total number of traders.

Chapter 5 tackles the market design problem in the online shopping model with

group buying, where traders’ valuations are changing with respect to the allo-

cation decisions of the market, in particular, the number of units each trader

trade. It provides new insights (impossibilities and possibilities) into the auc-

tion design problem under group buying. In particular, it shows that there is

no (weakly) budget-balanced, individually rational and truthful mechanism that

can also guarantee the transaction size, although there do exist trivial (weakly)

budget-balanced, individually rational and truthful mechanisms, for example, the

ones with predetermined fixed prices.

Chapter 6 demonstrates how a complicated online double auction can be reduced to

an online one-sided auction. More importantly, it shows that the truthfulness and

competitiveness (with regard to efficiency) of the reduced online double auction
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match/follow those of the online one-sided auction. It also shows that designing

a deterministic online double auction that is truthful, individually rational and

competitive is impossible, given that no prior knowledge of the uncertainty is

accessible. However, such a mechanism is achievable if certain prior knowledge of

the dynamics is available.

Chapter 7 studies a more complicated, dynamic bilateral trading environment,

where each trader may be active for more than one discrete period of time with

a variable valuation in response to the decisions of the mechanism. Since the dy-

namics are responsive to the decisions of the mechanism, we are able to control

or predict the uncertainty to some extent. To that end, this chapter proposes

an auction design framework that firstly learns traders’ private behaviours and

then utilises that learnt result to guide market decisions in order to have bet-

ter control/prediction of the traders coming in the future so that more desirable

allocations will be achieved.

Chapter 8 concludes the major contributions of the thesis and proposes some

directions for further investigation.



Chapter 2

Double Auction Models: Static

and Dynamic

After a brief introduction to some important double auction design objectives/desider-

ata, this chapter presents the models for both static and online/dynamic double

auction design. Due to the revelation principle [Myerson, 2008b], this thesis will fo-

cus on direct-revelation mechanisms. In other words, each trader (seller or buyer)

is required to report his or her private information (aka type) directly to the auc-

tion. The type report submitted by a seller is known as the ask, while the report

from a buyer is the bid. Both asks and bids are called orders.

First, a brief overview of double auction design. We know that a mechanism is

a specification of how economic decisions are determined as a function of the in-

formation that is known by the individuals in the economy [Myerson, 2008a]. A

double auction is one kind of mechanism and its decisions consist of a resource

allocation and a payment calculation for each trader. Therefore, to design a dou-

ble auction is to design an allocation policy and a payment policy. The allocation

policy determines who will get the resources/goods, which is a matching between

buyer and seller, and the payment policy calculates how much each trader has to

13
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pay. In general, all mechanisms involving payments have the same structure. Al-

though the allocation policy and the payment policy are two separate components,

they have to be designed together in order to satisfy certain desiderata that will

be introduced next.

2.1 Design Objectives

The following desirable objectives or desiderata are the most commonly considered

in double auction design and also in this thesis [Dash et al., 2003, Nisan, 2007]:

• Incentive Compatibility (or Truthfulness). A mechanism is said to be incen-

tive compatible if all of the participants maximise their utilities when they

truthfully reveal any private information asked for by the mechanism. This

property is also known as truthfulness and truth-telling.

• Social Welfare Maximisation (or Efficiency). This objective corresponds to

maximising the goods of the buyers and sellers in aggregate. Specifically, the

objective is to have the goods end up in the hands of the agents who value

them the most. That is, the goods are allocated to the traders who value

them most highly.

• Budget Balance. The total payment that the buyers and sellers make equals

zero (a strict budget balance), so no money is injected into or removed from

the mechanism. We say a mechanism is weakly budget-balanced if the total

payment is non-negative, so the mechanism does not run at a loss.

• Individual Rationality. A mechanism is individually rational if it gives its

traders non-negative utility/profit. In other words, the mechanism’s alloca-

tions do not make any trader worse off than had the trader not participated,

so traders volunteer to participate in the mechanism.
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• Profit Maximisation. Each pair of ask and bid that are matched produces a

profit, which is the difference between the bid price and the ask price. This

objective is to maximise the sum of these differences, over all matched pairs.

• Liquidity Maximisation. The goal is to maximise: (a) the number of trans-

actions, (b) the sell volume, i.e. the total amount of cleared asks, and (c)

the buy volume, i.e. the total amount of cleared bids.

2.2 Static Double Auctions

(Static) mechanism design is the discipline of designing mechanisms for static en-

vironments. An environment is considered static if all participants’ type reports,

i.e. the input of the mechanism, are known to the mechanism before the mecha-

nism makes any decision. That is, the mechanism faces no uncertainty about the

information it needs for its decision-making.

(Static) double auction design is the design of mechanisms for static bilateral

trading environments in which multiple sellers and multiple buyers exchange one

commodity simultaneously. The allocation policy of a double auction is a (bipar-

tite) matching between buyers and sellers. A matching is a set of buyer-seller pairs

and an exchange quantity is associated with each pair, which indicates the number

of units transferred in the pair. It is clear that the exchange quantity is one for

all pairs in single-unit environments, where each trader supplies or demands only

one unit of a commodity. In the next section, a formal description is provided

for the setting and the corresponding definitions of some properties introduced in

Section 2.1.
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2.2.1 The Model

Consider a double auction market, in which a setB of buyers and a set S of sellers

trade one commodity simultaneously. Buyers and sellers are called traders. Let

T = B ∪ S and assume that traders are independent and B ∩ S = ∅
1; that is, no

trader can be both a seller and a buyer.

Each trader i ∈ T has a privately observed type θi = (vi), vi : Z → R is the

trader’s valuation function, where the input is the number of units of a commodity

and the output is the trader’s valuation on the bundle of that number of units,

e.g. vi(3) is trader i’s valuation on a bundle of 3 units of the commodity. Let

v(θi) = vi. Note that the type θi of trader i does not specify explicitly how many

units i supplies/demands, but this information can be carried by the valuation

function as well, which is denoted by ci. For instance, if seller i only supplies ci

units as a bundle, then i can set vi( 6= ci) =∞, while if buyer j only wants a bundle

of cj units, j can set vj( 6= cj) = 0, or vj(< cj) = 0 and vj(> cj) = vj(cj) if j does

not mind getting more than cj units without extra payment. When discussing

single-unit double auctions, the notation is simplified by dropping the input of vi

and using vi to directly indicate i’s valuation for one or more units.

Let θ = (θi)i∈T denote the type profile where θi is the type of trader i. θ−i

indicates the type profile of all traders except trader i. Note that a type profile

is treated as a vector of types rather than a set of types. Let Θi be the set of all

possible types of trader i, and let Θ = (Θi)i∈T be all possible type profiles of all

traders in T .

Although traders are required to report their types directly to the auctioneer (that

is, the market owner), they do not necessarily report their true types. Let R(θi) be

the set of all permitted type reports from trader i of type θi, R(θ) = (R(θi))i∈T be

the set of all permitted type profile reports from all traders, R(Θi) =
⋃

θi∈Θi
R(θi)

1In the real word, a trader can be both a seller and a buyer for the same commodity. In such
a case, it is modelled as two different roles since the decision-making for selling and buying is
different.
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be the set of all possible reports from i, and R(Θ) = (R(Θi))i∈T be the set of

all possible type profile reports from all traders. Note that in some cases traders

misreporting are constrained, so R(·) actually carries those constraints. In this

general static model, there is no constraint on misreporting, but examples are

shown in this chapter.

Definition 2.1. An allocation policy π = (πi)i∈T is a function that assigns an

integer number to each trader i indicating the number of units traded by i, given

traders’ type profile report θ̂ ∈ R(Θ), such that
∑

i∈B πi(θ̂) =
∑

i∈S πi(θ̂).

An allocation policy determines whose order is granted for a transaction and also

guarantees that the allocation outcome is feasible; that is, the auctioneer never

takes a short or long position in the commodity exchanged in the market. For a

trader i, if πi(θ̂) > 0 then i wins; otherwise i loses.

Definition 2.2. A payment policy x = (xi)i∈T is a function that assigns a

real number to each trader given traders’ type profile report θ̂ ∈ R(Θ); that is,

xi(θ̂) ∈ R for all i ∈ T .

Definition 2.3. A double auction (DA) on Θ is a pair (π, x), where π is an

allocation policy and x is a payment policy.

Note that the double auction definition above only covers deterministic auctions,

and a non-deterministic double auction will be represented as a probability distri-

bution of deterministic double auctions, although sometimes an allocation policy

(or a mechanism) is directly defined with probabilistic outcomes.

Given trader i of type θi = (vi), report profile θ′ and DAM = (π, x), the utility

of i is defined as

u(θi, θ
′, (π, x)) =







v(θi)(πi(θ
′))− xi(θ

′), if i ∈ B.

xi(θ
′)− v(θi)(πi(θ

′)), if i ∈ S.
(2.1)
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Considering that DAM = (π, x) might be non-deterministic, E[u(θi, θ
′, (π, x))] is

used to denote the expected utility of trader i.

Given the above utility definition, the formal description of the truthfulness prop-

erty and efficiency property briefly introduced in Section 2.1 is provided. To recall

an auction is truthful if reporting type truthfully maximises each trader’s utility,

and a mechanism is efficient if it always allocates resources to those traders who

value them most highly, among all feasible allocations.

Definition 2.4. DAM = (π, x) is truthful (aka incentive-compatible) if

E[u(θi, (θi, θ
′
−i), (π, x))] ≥ E[u(θi, θ

′, (π, x))] for all i ∈ T , all permitted misreports

θ′ ∈ R(θ), all type profile θ ∈ R(Θ).

Definition 2.5. DAM = (π, x) is efficient ifM maximises the expected social

welfare

E[
∑

i∈B
v(θi)(πi(θ)) +

∑

i∈S
v(θi)(ci − πi(θ))] (2.2)

for all type profile θ ∈ R(Θ), where ci is the number of units seller i supplies.

2.3 Approaching Online Double Auctions

We consider that an environment is dynamic if the individuals in the environment

are dynamically arriving and departing, or if their valuations are changing over

time, or both. The difference between a static environment and a dynamic envi-

ronment is that the mechanism for the first faces no uncertainty of the information

required for its decision-making, while the mechanism for the latter faces uncer-

tainty. The reasons for this uncertainty in a dynamic environment are that (1)

traders are not available at the same time, for example, they are dynamically ar-

riving and departing, and (2) traders’ valuations vary over time. These two causes

make the information required for decision-making incomplete, and also challenge

the decision-making even if there is no uncertainty about the required information.
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For example, a seller and a buyer can exchange within a static environment but

will not be able to do so in a dynamic environment if they are not available at

the same time. Rather than directly going to dynamic environments, this section

shows how to model complex static environments such that the decision-making in

these environments is as complex as in dynamic environments, except that there

is no uncertainty faced in the decision-making. According to the two causes of

the dynamics described above, two different complex static environments will be

modelled below: one is called double auction with temporal constraints and the

other is called double auction under group buying.

2.3.1 The Model

2.3.1.1 Double Auction with Temporal Constraints

In addition to the valuation function, the type of each trader in this model contains

a temporal constraint. The temporal constraint is a period of time. Exchange

can occur between two traders if and only if the intersection of their temporal

constraints are not empty; that is, the transaction that occurred between two

traders without intersection of their temporal constants does not bring any value

to either of them. In addition to serving the online double auction design, this

model also demonstrates some real static environments. In a futures market, for

example, each futures contract is to buy/sell specific quantities of a commodity at

a specified price with delivery set at a specified time in the future. A more detailed

example would be a seller wanting to sell 100 tonnes of corn in August 2012 at a

fixed price, and there is a buyer who wants to buy exactly that amount of corn

between June and September 2012 at that price, so they can reach an agreement

to exchange 100 tonnes of corn in August 2012.
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To model this kind of environment, a period of time is added into traders’ type,

such that the type of trader i is θi = (vi, si, ei), where vi is the valuation func-

tion, and si and ei are the starting point and the ending point of the temporal

constraint [si, ei]. To simplify the analysis, we will consider single-unit environ-

ments; that is, vi will be directly used to indicate trader i’s valuation for one or

more units.

Given the above extended types, all the concepts described in Section 2.2.1 are

still applicable to this model. The only difference here is the allocation policy

as it has to consider the temporal constraint to obtain a matching. Detailed

matching algorithms to handle this issue are given in Chapters 4 and 6. As seen

in Section 2.4, this model is also the corresponding static version of the model for

online environments with dynamically arriving and departing traders.

For type reporting, traders do not necessarily truthfully report their types but no

early-start and no late-end misreports are permitted. Formally, let θi = (vi, si, ei)

be trader i’s type and θ̂i = (v̂i, ŝi, êi) ∈ R(θi) be the trader’s report such that

[ŝi, êi] ⊆ [si, ei]. The intuition behind this assumption is that no trader would re-

port a temporal constraint that might give that trader negative utility, as traders

have no valuation for any transaction that happens outside their temporal con-

straint.

2.3.1.2 Double Auction under Group Buying

The environment modelled in Section 2.3.1.1 considers temporal constraints that

map to the dynamic arrival and departure feature in the corresponding online

environment, which is one of the causes of the dynamics described in the very

beginning of this section. The other cause of the dynamics is the variation of

traders’ valuation. To see the variation of traders’ valuation in a static environ-

ment, a hugely expanding online shopping model, which leverage group buying,

is shown. Group buying is a business model in which a number of buyers join
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together to order a product in a certain quantity in order to gain a desirable dis-

counted price. Such a business model has recently received significant attention

from researchers in economics and computer science, mostly due to its successful

application in online businesses, such as Groupon.

To model this group buying shopping environment, the model given in Section 2.2.1

is extended by adding extra information/constraints into traders’ valuation func-

tions. Assume that sellers’ valuation is monotonic:

vi(k) ≤ vi(k + 1),

and satisfies group buying discount:

vi(k)

k
≥ vi(k + 1)

k + 1
.

That is, a seller’s valuation is non-decreasing as the number of units to sell in-

creases, while the mean unit valuation is non-increasing (so buyers can get a

discount if the mean valuation is decreasing). One intuition for the group buying

discount constraint is that the average unit production cost may decrease when

many units can be produced at the same time. For a buyer i of type vi requiring

ci > 0 units, vi satisfies vi(k) = 0 for all k < ci and vi(k) = vi(ci) > 0 for all

k ≥ ci. The first constraint of buyers’ valuations is that their demands cannot

be partially satisfied. The second assumption is that there is no extra value for

buyers to get extra units and also no cost for them to dispose of extra units (aka

free disposal).

Special Challenges

The model in Section 2.3.1.1 can reuse all the formal definitions given in Sec-

tion 2.2.1. Unfortunately, we cannot reuse all of the notions for this model. The

main reason is that the definition of utility in this model is not the same as in
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the other models, mainly for sellers. The utility defined in Section 2.2.1 is the

most commonly used one, called quasilinear utility, which assumes either that the

valuation for each unit is the same if traders’ supplies and demands can be par-

tially satisfied, or that they do not have value for partial satisfaction. However, in

this model, sellers are encouraged to sell a portion of their supply with different

prices, so the valuation for each unit is not the same before and after the auc-

tion. Therefore, how to calculate their utilities becomes a difficult question. For

instance, a seller supplies two units of a commodity with unit prices p1 > p2 for

selling one and two units, respectively. If one unit is left for the seller, what will

be the seller’s valuation for this unsold unit? If the valuation for the unsold unit

is different before and after the auction, how should it be different and, therefore,

how should the seller calculate utility? Thus, the quasilinear utility definition

given in (2.1) cannot be used here without additional constraints. This is a very

interesting problem in economics, and we are not yet aware of sufficient solutions.

This question is left for future work, and in this thesis it is assumed that the

supply of each seller is unlimited. Given this unlimited supply assumption, all the

notations given in Section 2.2.1 are applicable here.

2.4 Online Double Auctions

An environment is dynamic if its participants are arriving and departing over

time [Parkes, 2007], the valuation of each participant is changing over time [Berge-

mann and Välimäki, 2010, Cavallo and Parkes, 2008], or both [Cavallo et al., 2009].

The mechanism design problem for dynamic settings is termed online mechanism

design. The main challenge in online mechanism design is that decisions of an

online mechanism have to be made dynamically, without knowledge of future par-

ticipants and/or types. For instance, a seller is selling a house, and each buyer

comes at a different time, with a price to buy the house and a waiting period
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within which the seller has to decide whether or not to sell it to that buyer. The

challenge for the seller is deciding when and to whom to sell the house.

In this thesis, two dynamic environments are examined. In one, traders are arriving

and departing dynamically and they only participate in the market for one period

of time, with an invariant valuation during their participation. In the other envi-

ronment, each trader may actively participate in the market for multiple discrete

periods of time, and the valuations are not necessarily the same for two different

active periods. More importantly, in the first environment, the traders’ valuations

and active time do not change in response to the decisions of the auction, while the

traders’ valuations and active time vary in response to the decisions of the auction

in the second environment. The first environment is called a decision-independent

dynamic environment and the second a decision-dependent dynamic environment.

The first environment is a direct extension of the environment modelled in Sec-

tion 2.3.1.1. The second is an extension of the first environment plus the extension

of the environment modelled in Section 2.3.1.2.

2.4.1 The Model

As these environments are extensions of the environments modelled above, it is

possible to reuse most of the formalisations from the above with some minor

variations. In the rest of this section, these variations are briefly introduced.

2.4.1.1 Decision-independent Dynamic Environment

To model this environment, the formalisation from Section 2.3.1.1 is reused. The

only difference here is the allocation policy, which faces uncertainty for its decision-

making in this environment. To distinguish these two different environments,

θi = (vi, ai, di) is used to represent the type of trader i, where vi, ai, di ∈ R
+, vi is



Chapter 2. Double Auction Models 24

i’s valuation function, and ai and di are the starting point and the ending point

of i’s active time; that is, the arrival and departure time of i.

Regarding misreports, assume that traders can report any type but no early-

arrival and no late-departure misreports are permitted; that is, given trader i’s

type θi = (vi, ai, di), his report θ
′
i = (v′i, a

′
i, d

′
i) satisfies a

′
i ≤ d′i and [a′i, d

′
i] ⊆ [ai, di].

The intuition behind this constraint is that traders do not recognise the market

before their arrival and they do not obtain utility for any trade occurring after

their true departure time.

2.4.1.2 Decision-dependent Dynamic Environment

This is a highly complex dynamic environment, in the sense that both the trader’s

valuation and active time are changing over time with respect to the decisions of

the auction. To model this kind of environment, state transition system has been

used, for example, [Cavallo et al., 2009]. Other than model traders’ types as any

state transition system, this thesis will focus on some special models of traders

that are well recognised in real market environments. The auction design issue

is investigated in a dynamic environment with these well-studied trader models.

The details of these models will be introduced during the design procedure.

2.5 Summary

This chapter has provided an overview of (online) double auction design, espe-

cially the design goals. It formally described the models for both the static and

dynamic double auction environments studied in this thesis. These environments

are grouped in three categories. The first is the general static environment cover-

ing both single-unit and multi-unit double auctions studied in the literature. The

second category contains two advanced static environments that model certain

interesting real environments and also serve the online double auction design in
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the environments modelled in the third category. The third category models two

dynamic double auction environments which are extensions and combinations of

the environments modelled in the first two categories.

The model in the first category will be briefly studied in Chapter 3, those in the

second category will be studied extensively in Chapters 4 and 5, and the online

models in the third category will be examined in Chapters 6 and 7. These models

will be recalled and expanded in the corresponding chapter.





Chapter 3

Matching in a Double Auction

The decisions of a double auction consist of an allocation and a payment calcu-

lation for each trader. The allocation is actually a matching between buyers and

sellers. A matching is set of buyer-seller pairs, and each pair indicates a transac-

tion between the buyer and the seller. If each trader only supplies or demands one

unit of a commodity, then the number of units exchanged in a pair is one, other-

wise, the number of units exchanged in a pair needs to be specified explicitly. This

chapter introduces some basic matching algorithms for both static and dynamic

double auctions, all of them except maximal matching are previously studied in

the literature.

3.1 Static Matching

In this section, we introduce two fundamental matching algorithms for single-

unit double auctions. One is called Equilibrium Matching and the other is called

Maximal Matching.

27
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3.1.1 Equilibrium Matching

Equilibrium Matching is used to find an equilibrium price p∗ which balances the

bids and the asks going to be matched so that all the bids with price p ≥ p∗ and all

the asks with price p ≤ p∗ are matched [Friedman and Rust, 1993]. The algorithm

is described below.

Equilibrium Matching

1. Sort all asks (bids) in ascending (descending) order with respect to their

price.

2. Based on this sort order, starting at the top, if the ask price is less than

or equal to the bid price, add that ask-bid pair to the matching result.

3. Repeat last step until there is no more pair can be added in the matching

result.

It is evident that Equilibrium Matching gives an efficient allocation. The equilib-

rium price is normally determined by the last matchable or the first unmatchable

shout pair with respect to the matching order in the algorithm [McAfee, 1992,

Wurman et al., 1998].

3.1.1.1 Impossibility

A double auction with Equilibrium Matching or its variants can be incentive com-

patible or efficient (but not both) with some special payment polices [McAfee,

1992, Wurman et al., 1998]. This impossibility has been shown by Myerson and

Satterthwaite [1983] (see Theorem 3.1):
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Theorem 3.1. There does not exist a double auction that is truthful, efficient,

individually rational and (weakly) budget-balanced.

Due to the above impossibility result, we have to sacrifice one of the four objec-

tives/properties in Theorem 3.1. McAfee [1992] proposed a truthful, individually

rational and budget-balanced double auction that is not efficient. McAfee’s key

idea is trade reduction, i.e. reducing the match that gives the least social welfare

increase if necessary. McAfee also showed that the proposed auction approaches

efficiency if the number of traders approaches infinity. This trade reduction idea

has inspired some further work dealing with similar problems in different static

exchange environments. For example, Gonen et al. [2007] proposed a general trade

reduction framework for different exchange environments including multi-unit and

combinatorial cases.

Instead of efficiency, other properties have also been extensively considered for

sacrifice. The well-known VCG mechanism chooses budget balance [Groves, 1973,

Vickrey, 1961]. Wurman et al. [1998] proposed single-unit double auctions that

are efficient, individually rational, budget-balanced but only partially truthful, i.e.

truthful only for either buyers or sellers, and they also showed that there is no

multi-unit double auction that is individually rational, efficient, budget-balanced

and partially truthful, given that a trader’s valuation for each unit is independent

of how many units he trades if partial satisfaction is possible or traders do not

allow partial satisfaction (which is different from the multi-unit double auction

studied in Chapter 5). Under a similar setting to the one studied by [Wurman

et al., 1998], Huang et al. [2002] proposed multi-unit double auctions that are

individually rational, weakly budget-balanced and truthful, but not efficient.
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3.1.2 Maximal Matching

The goal of a double auction with Equilibrium Matching or its variants is to pro-

duce efficient allocations. However, no double auction mechanism with Equilib-

rium Matching can maximise liquidity as the uniform clearing price might prohibit

some matchable shouts from being matched. In order to maximise the number of

matches/transactions, it is essential to allow different matches to be cleared at

different prices1. Otherwise, some matches might be cleared at a price that is not

between the ask price and the bid price, i.e. it will act against individual rational-

ity, which is another important desideratum of double auction mechanism design.

Based on this idea, we introduce a new matching algorithm, named Maximal

Matching, which maximises the number of matches. The algorithm is described

below, which recursively calls Equilibrium Matching.

Maximal Matching

1. Given an input of shouts, calculate the matching (the set of matched

pairs) with Equilibrium Matching, and mark all the matched shouts as

matched and all the other shouts as unmatched.

2. Recursively check how many matches Maximal Matching can achieve if

the input shouts were matched asks and unmatched bids.

3. Recursively check how many matches Maximal Matching can achieve if

the input shouts were unmatched asks and matched bids.

4. Choose the minimum of the numbers from the last two steps as the extra

number of matches Maximal Matching can achieve.

1Sales of identical goods or services that are transacted at different prices is named price dis-

crimination [Nagle and Holden, 2001]. In reality, discriminatory pricing may apply to differences
in product quality. For example, airlines often offer multiple classes of seats on flights, such as
first class and economy class. This is a way to differentiate consumers based on preference, and
therefore allows the airline to capture more producer’s surplus.
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5. Cross match extra matchable shouts with the matched shouts in step 1:

the ask in the first matched pair is rematched with the last extra match-

able bid, while the bid in the pair is rematched with the last matchable

ask, then the second matched pair with the second last extra matchable

ask and bid, and so on until all extra matchable shouts are matched.

Figure 3.1: Equilibrium Matching vs Maximal Matching

Figure 3.1 shows a matching example of both Equilibrium Matching and Maxi-

mal Matching with the same set of shouts, where the numbers are the prices of

shouts (other information is omitted), M indicates the last matchable pair with

Equilibrium Matching, and the arrowed lines link each matched pair. We can see

that Maximal Matching achieves two more matches than Equilibrium Matching

does. In addition, Maximal Matching shows computational advantage compared

with similar bipartite matching algorithms from graph theory. The corresponding

complexity analysis is given in the following.

3.1.2.1 Complexity Analysis

Maximal Matching is equivalent to finding a maximum bipartite matching in a

bipartite graph G = (V = (Xask, Xbid), E), where E contains only one edge for

each pair of ask a and bid b if p(a) ≤ p(b). Let na = |Xask|, nb = |Xbid|, and

nem and nmm be the numbers of matches obtained with Equilibrium Matching

and Maximal Matching, respectively. Maximal Matching runs in O(na log na) +
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O(nb log nb)+O((nem)
2) time in the worst case, where O(na log na) and O(nb lognb)

are the complexities of sorting asks and bids (e.g. merge sort), and O((nem)
2) is

that of the rest of Maximal Matching. The worst case condition for Maximal

Matching is that nem = min(na, nb) − 1 holds for all Equilibrium Matchings in

Maximal Matching, unless min(na, nb) ≤ 1. So we can rewrite the complexity

of Maximal Matching as O(max(na, nb) logmax(na, nb) + min(na, nb)
2). As refer-

ence, the best known worst-case performance bipartite matching algorithm is the

Hopcroft-Karp algorithm, which runs in O(|E|√na + nb), where |E| ≥ (nem)
2 in

our model, time in the worst case [Hopcroft and Karp, 1971]. The worst case con-

dition for the Hopcroft-Karp algorithm in our model is that nem = min(na, nb), so

O(|E|√na + nb) ≥ O(min(na, nb)
2
√
na + nb). Thus Maximal Matching will out-

perform the Hopcroft-Karp algorithm in the worst case in our model if the number

of shouts are big enough.

3.2 Online Matching

We have seen two basic matching/allocation algorithms for static double auctions

in the last section. In this section, I will introduce two basic online matching

algorithms for online double auctions from the literature. One is called Ranking,

which has been well-studied in graph theory for online bipartite matching (where

the dynamics comes from only one side) [Karp et al., 1990]. The other one is a

very greedy online matching for the case where both sides are dynamic, called

Greedy [Blum et al., 2006].

3.2.1 The Ranking Algorithm (for One-sided Dynamics)

Karp et al. [1990] introduced online bipartite matching, which was one of the

first problems to receive the attention of competitive analysis. The input to the

problem is a bipartite graph G = (U, V, E), in which the vertices in U arrive in an
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online fashion and the edges incident to each vertex u ∈ U are revealed when u

arrives. When a vertex in U arrives, the algorithm may match u to a previously

unmatched adjacent vertex in V , if there is one. Such a decision, once made, is

irrevocable. The objective is to maximise the size of the matching. Karp et al.

proposed a matching algorithm called Ranking described below. Regarding the

performance of the Ranking algorithm, they demonstrated the following theorem

with respect to the matching size. Recall that, to measure the performance of

an online algorithm, we compare its results with the optimal offline result (see

Section 1.2). The competitive ratio is the minimum of {the optimal result} divided
by {the result of the online algorithm} for all different instances. For example,

Theorem 3.2 says that the Ranking algorithm can achieve an allocation with a

matching size at least 1− 1/e ≈ 0.63 of the optimal matching size.

Theorem 3.2. The Ranking algorithm achieves a competitive ratio of e/(e − 1)

with respect to maximising the size of the matching.

The Ranking Algorithm

Initialization:

• Choose a random permutation (ranking) σ of the vertices of V .

Online Matching:

Upon arrival of vertex u of U :

• Let N(u) be the set of neighbours of u that have not been matched yet.

• If N(u) 6= ∅, match u to the vertex v ∈ N(u) that minimises σ(v).
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Online Weighted Matching

It is worth mentioning that online weighted matching, as another important online

bipartite matching, considers the weight rather than the size of the matching in

metric spaces [Kalyanasundaram and Pruhs, 1993]. The weight of a matched pair

is the distance between the two vertices. However, the result in online weighted

matching cannot be directly applied in online double auctions, because of their

special setting. Online weighted matching assumes that the distance between any

two vertices is non-negative, while in a general double auction, the weight might

be negative if we consider weight as the social welfare change of a matched pair

of buyer and seller. Moreover, we need to consider social welfare in online double

auctions while the weight considered in online weighted matching is just the change

in social welfare. Most importantly, when we consider truthfulness and other

properties, online double auctions become more complex as only a perfect matching

of online matching and payment calculation is able to satisfy these properties.

3.2.2 The Greedy Algorithm (for Two-sided Dynamics)

The Greedy algorithm is proposed for online double auctions where both buyers

and sellers arrive and depart dynamically, which has been extensively studied by

Blum et al. [2006]. The idea of the algorithm is that on the arrival of each bid

(ask), check if it can be matched, if so match it with any ask (bid) that can be

matched with the bid (ask). To check the performance of the algorithm, [Blum

et al., 2006] showed the following theorem with respect to the matching size, i.e.

the matching size is at least half of the optimal one.

Theorem 3.3. The Greedy algorithm achieves a competitive ratio of 2 for max-

imising matching size.

Note that the impossibility result given in Theorem 3.1 can be easily extended

to online double auctions. Of course, to achieve better online performance, we
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need more dedicated online algorithms matched with carefully designed payment

policies as we will see in the following chapters.

3.3 Summary

We have introduced some basic matching/allocation algorithms for both static

and online double auctions. They are very basic, but sufficient to demonstrate

the difficulty of the allocation problem and how it can be solved. In the following

chapters, we combine allocation and payment together to see the design problem

in the different environments introduced in Chapter 2.





Chapter 4

Double Auction with Temporal

Constraints

This chapter starts the study of a decision-independent dynamic environment in

which traders are dynamically arriving and departing, each trader is active for

only one period of time and traders’ valuations do not change during their active

time. The chapter examines the corresponding static design problem for this

environment, and the online auction design problem is addressed in Chapter 6 by

using reduction.

It is found that the static allocation problem in this model can be effectively

transformed into a weighted bipartite matching in graph theory. The allocation

policy is efficient if and only if it corresponds to a maximum-weighted bipartite

matching. By using the augmentation technique, this chapter proposes a VCG

mechanism in this model and demonstrates the computational advantage of the

payment compared with the classical VCG payment (the Clarke pivot payment).

The algorithms for both allocation and payment calculation run in polynomial

time. It is expected that the method and results provided in this chapter can be

applied to the design and analysis of dynamic double auctions. The result is also a

37
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dedicated solution for real trading environments such as futures markets in which

temporal information is part of traders’ orders.

4.1 Introduction

Although price is the major concern of market clearing in most double auction

markets, other factors, such as quantity, quality and temporal constraints, are

equally important in some market situations. For example, a futures contract nor-

mally specifics not only the price of the underlying commodity but also quantity,

quality and settlement date. Nevertheless, most real-world exchange markets are

purely price-driven and most studies on double auctions are limited to a single-

valued domain [McAfee, 1992, Wilson, 1985]. One reason is that some factors, e.g.

quantity and quality, can be eliminated by standardising exchange commodities.

However, those attributes with a continuous range or large number of varieties,

are hard to standardise.

This chapter considers an extension of the single-valued double auction model that

allows traders to specify temporal constraints in their orders. Roughly speaking,

an order is written in the form (p, t′, t′′), where p stands for the order price and

[t′, t′′] represents the time period when the commodity can be exchanged (not for

the order itself). In this extension, a bid and an ask is matchable if and only if the

bid price is no lower than the ask price and the intersection of their time constraints

is non-empty. We show that the market clearing problem under this extension can

be transformed into a weighted bipartite matching. This allows us to use some

standard techniques in graph theory, such as augmentation, for the design and

analysis of the mechanisms. We prove that an allocation for the double auction is

efficient if and only if it corresponds to a maximum weighted bipartite matching of

the graph encoding the incoming orders. Based on that, we develop an efficient and

incentive-compatible double auction mechanism, i.e. a VCG mechanism [Groves,

1973]. Remarkably, the proposed payment can be implemented much faster than
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the classical VCG payment, known as Clarke pivot payment, while resulting in

the same payments, because it directly uses the abridging and replacing paths

generated during the allocation process rather than rerun the allocation algorithm

as the Clarke pivot payment does.

It is worth mentioning that, similar temporal information is also used to model the

dynamics of a corresponding dynamic environment [Blum et al., 2006, Bredin et al.,

2007]. Although the meaning of the temporal information of a trader’s type in the

online setting (see Chapter 6) is different from that in this setting, a trader’s type is

modelled in the same way in both settings. Therefore, the mechanism in this model

also provides an optimal (offline) solution for a corresponding dynamic market.

Such an optimal solution can be directly used for calculating the competitive

ratio of an online market-clearing algorithm. Moreover, although orders arrive

dynamically, the alternating paths are relatively stable and therefore can be used,

for example, to identify potential good orders to find more efficient allocations in

an online setting.

This chapter is organised as follows. Section 4.2 briefly introduces the market

model and related concepts. In Section 4.3, we introduce a graphic representation

for market situations and transfer the market clearing problem into a weighted

bipartite matching. Section 4.4 concentrates on the design of an allocation algo-

rithm and a payment algorithm, and proves their desirable properties. A short

conclusion is given in Section 4.5 with a brief discussion for future work.

4.2 The Model

Some concepts from Chapter 2 are recalled and expanded here to make this chapter

easy to follow. Consider a double auction market, in which a set B of buyers

and a set S of sellers trade one commodity simultaneously. Buyers and sellers

are traders. Let T = B ∪ S and assume that the traders are independent and
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B∩S = ∅. We also assume that each seller and each buyer supplies and demands

a single unit of the commodity.

Each trader i ∈ T has a privately observed type θi = (vi, si, ei), where vi, si and

ei are non-negative real numbers, vi is the trader’s valuation of a single unit of

the commodity, and si and ei are the starting point and the ending point of the

time constraint [si, ei]. If trader i is a buyer, i obtains utility vi − p if i receives

a unit of the commodity within the time interval [si, ei] and pays p; i obtains

zero utility if i pays nothing and does not receive the commodity within the time

period. Similarly, if i is a seller, i obtains utility p− vi if i successfully sells a unit

of the commodity within the time period [si, ei] and receives payment p; i obtains

zero utility if i fails to sell the commodity within the time period and no payment

is made.

Let θ = (θi)i∈T denote the type profile where θi is the type of trader i. θ−i means

the type profile of all traders except trader i. Note that we treat a type profile as

a vector of types rather than a set of types. Let Θi be the set of all possible types

of trader i, and we write Θ = (Θi)i∈T .

Due to revelation principle [Myerson, 2008b], this chapter focuses on direct-revelation

mechanisms; that is, traders report their types directly to the auctioneer. How-

ever, traders do not necessarily truthfully report their types, but no early-start and

no late-end misreports are permitted. Formally, let θi = (vi, si, ei) be trader i’s

type and θ̂i = (v̂i, ŝi, êi) be the trader’s report. We assume that [ŝi, êi] ⊆ [si, ei].

The intuition behind the assumption is that no trader would report a temporal

constraint that might give him negative utility. Let R(θi) be the set of all permit-

ted reports from trader i given his type θi, R(Θi) =
⋃

θi∈Θi
R(θi) be the set of all

possible reports from i, and R(Θ) = (R(Θi))i∈T .

Given traders’ reports θ ∈ R(Θ), an ask θi = (vi, si, ei) (means i ∈ S) and

a bid θj = (vj, sj, ej) (means i ∈ B) are matchable if and only if vi ≤ vj and
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[si, ei]∩ [sj , ej] 6= ∅. That is, the bid’s valuation is no less than the ask’s valuation,

and the intersection of their time constraints is not empty.

An allocation policy π = (πi)i∈T is a function that assigns 0 or 1 to each trader,

given traders’ reports θ̂ ∈ R(Θ). For a trader i, if πi(θ̂) = 1 we say i wins; otherwise

i loses. An allocation determines whose order is granted for a transaction.

A payment policy x = (xi)i∈T is a function that assigns a real number to each

trader given an input of traders’ reports θ̂ ∈ R(Θ), i.e. xi(θ̂) ∈ R for all i ∈ T .

Definition 4.1. A double auction mechanism on Θ is a pair (π, x), where π

is an allocation policy and x is a payment policy.

Following the standard definition, we say that an auction mechanism (π, x) is

efficient if π maximizes

∑

i∈B&πi(θ)=1

vi +
∑

i∈S&πi(θ)=0

vi.

for any type profile θ = ((vi, si, ei))i∈T .

We say that an auction mechanism is incentive-compatible, i.e. truthful, if for

each trader, reporting his true type is his dominant strategy.

There are a number of alternatives to characterise truthfulness in an auction mech-

anism. We will use one of them in this chapter based on [Nisan, 2007, Parkes, 2007].

To describe it, we need the following two auxiliary concepts [Parkes, 2007].

For each trader i, we define a partial order �i on R(Θi):

θ̂′i �i θ̂
′′
i iff







v′i ≥ v′′i & [s′i, e
′
i] ⊆ [s′′i , e

′′
i ], if i ∈ S

v′i ≤ v′′i & [s′i, e
′
i] ⊆ [s′′i , e

′′
i ], if i ∈ B

where θ̂′i = (v′i, s
′
i, e

′
i) and θ̂′′i = (v′′i , s

′′
i , e

′′
i ) ∈ R(Θi).
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We say that an allocation policy π is monotonic if, for each i ∈ T , πi(θ̂i, θ̂−i) = 1

implies πi(θ̂
′
i, θ̂−i) = 1 whenever θ̂i �i θ̂

′
i.

Definition 4.2. Given a monotonic policy π and traders’ reports θ̂ ∈ R(Θ), the

critical value of trader i of type θi = (vi, si, ei) is defined as

c(θi, θ̂−i) =







sup{v′i : (v′i, si, ei) ∈ R(θi) ∧ πi((v
′
i, si, ei), θ̂−i) = 1}, if i ∈ S

inf{v′i : (v′i, si, ei) ∈ R(θi) ∧ πi((v
′
i, si, ei), θ̂−i) = 1}, if i ∈ B

It is undefined if no such v′i exists.

Now we are ready to describe a characterisation of truthfulness, which will be

used in Section 4.4. Theorem 4.3 is based on Theorem 9.36 in [Nisan, 2007] for

a single-valued domain and on [Parkes, 2007] for a single-valued online domain.

The proof is omitted here as it is similar to the above mentioned theorems.

Theorem 4.3. A double auction mechanism (π, x) is incentive-compatible if and

only if:

• π is monotonic.

• every winning seller (buyer) is paid (pays) his critical value, and the payment

is 0 for losing traders.

4.3 Graph Representation

As assumed in the previous section, each trader has only one unit of a commodity

to sell or buy. Transaction must be made in pairs: a seller can only sell his

good to a unique buyer, assuming their orders are matchable. This means that

to allocate the goods in a double auction is to find matchings between buy orders

and sell orders. In such a case we can transform the allocation problem into a

matching problem in graph theory. As a result an efficient allocation corresponds
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to a maximum-weighted bipartite matching. We will first review some concepts

related to bipartite matching [West, 2000], encode incoming orders in a bipartite

graph, and then show some special properties related to the encoding.

Definition 4.4. A graph G = (V,E) is a bipartite graph if the vertex set V

consists of two disjoint subsets X and Y , and no edge has both end points in the

same subset. For explicitness, we denote the graph as G = ((X, Y ), E).

Definition 4.5. Given a traders’ report θ ∈ R(Θ), we call Gθ = ((Sθ,Bθ),E) a

bipartite graph generated from θ if

• Sθ = {θi : i ∈ S} and Bθ = {θi : i ∈ B},

• E = {(θi, θj) : θi and θj is matchable}.

Definition 4.6. Given a graph G, a matching M in G is a set of pair-wise

non-adjacent edges, i.e. no two edges share a common vertex. The size of M is

denoted by |M |. A vertex is matched if it is incident to an edge in the matching.

Otherwise the vertex is free.

Given a matching M ,

• an M-alternating path is a path in which the edges belong alternatively

to M and not to M .

• an M-augmenting path is an M-alternating path whose endpoints are

free.

• an M-abridging path is an M-alternating path whose first edge and last

edge are in M .

• an M-replacement path is an M-alternating path where one of the end-

points is free and one of the ending edges is in M .
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A path is simple if it has no repeated vertices. In the rest of this chapter, we will

only consider simple paths.

Figure 4.1 shows an example of bipartite representation of eight different type

reports. Lines and dashed lines indicate matched edges and free edges respectively,

and dots and circles denote matched vertices and free vertices respectively. The

value beside each vertex is its valuation. Temporal information is not shown in the

graph. Path (3,10,2,9) is an augmenting path, path (2,10,4,7) is an abridging

path, and path (2,10,4,7,5) is a replacement path.

Figure 4.1: Example of Alternating Paths

Given a matching M , we can use an M-augmenting path p to augment M by

changing all matched edges in p to be free and all the free edges to be matched.

By contrast an M-abridging path can be used in the same way to abridge M .

Consequently, |M | will increase (decrease) by one with one augmenting (abridging)

process. An M-replacement path can be used to replace a bid or an ask in M

without changing the status of the other vertices.

Definition 4.7. An allocation policy π is feasible if for any traders’ reports

θ ∈ R(Θ), there is a matching M in the bipartite graph generated from θ such

that M exactly covers {θi : πi(θ) = 1}.

It follows that any matching in a bipartite graph generated from traders’ reports

uniquely determines a feasible allocation. In the rest of this chapter, we will only

consider feasible allocation policies.

Definition 4.8. Given bipartite graph Gθ, an edge e between θi = (vi, si, ei) and

θj = (vj , sj, ej), where i ∈ S and j ∈ B, we define theweight of e as w(e) = vj−vi.

For any set of edges E ′ ⊆ E, the weight of E ′ is defined as
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w(E ′) =
∑

e∈E′ w(e).

The weight-increase of an M-alternating path p is the total weight of free edges

in p minus that of matched edges in p:

∆(p) = w(P −M)− w(P ∩M),

where P is the set of all edges in p.

If p is an M-augmenting, M-abridging, or M-replacement path, then ∆(p) is the

net change in the weight of the matching after augmenting, abridging, or replacing

by p:

w(M ⊕ p) = w(M) + ∆(p), where M ⊕ p ≡M ⊕ P , P is the set of all edges in p,

and ⊕ is the symmetric difference operator on sets: A⊕B = (A∪B)\ (A∩B).

Lemma 4.9. Given Gθ, a matching M in Gθ, and an M-alternating path p, ∆(p)

is equal to

• the valuation of the bid minus that of the ask of the endpoints of p, if p is

an augmenting path.

• the valuation of the ask minus that of the bid of the endpoints of p, if p is

an abridging path.

• the valuation of the free (matched) endpoint minus that of the matched (free)

endpoint of p when the endpoints are bids (asks), if p is a replacement path.

Proof. Without loss of generality, assume p is an augmenting path. Since the

weight of each edge is the valuation difference between the incident vertices, the

weight of all matched edges in p is the sum of the valuations of all matched bids

in p minus that of all matched asks in p, while the weight of all free edges in p

is the sum of the valuations of all bids in p minus that of all asks in p. So their

difference is the valuation of the free bid minus that of the free ask in p.
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4.4 Efficient and Truthful Policy Design

In order to design a double auction that is both efficient and truthful, by The-

orem 4.3, we need to find an efficient and monotonic allocation policy, and a

payment policy that calculates the critical value of each winning trader. Inspired

by the similarity between this allocation problem and the weighted matching in a

bipartite graph, we first transform the model into a bipartite graph. Within this

graph, we show how to efficiently use the well established methods from bipartite

matching in the allocation policy, and how to calculate critical payment without

running the allocation algorithm again.

4.4.1 Efficient & Monotonic Allocation Policy

With the above graph encoding of traders’ reports, we designed an efficient alloca-

tion policy by adopting the maximum-weighted bipartite matching that constructs

a maximum-weighted matching by beginning with the empty matching and re-

peatedly performing augmentations using augmenting paths of maximum weight-

increase until a maximum-weighted matching is achieved [Kozen, 1991, Tarjan,

1983]. The resulting allocation policy is called Maximum-weighted Bipartite

Matching Allocation (MBM Allocation), which seeks an allocation that max-

imises social welfare of any reports θ, by first representing θ in a bipartite graph

Gθ, and then applying modified maximum-weighted bipartite matching to get a

maximum-weighted matching M which determines all winning reports.

We added a more detailed path selection rule in the maximum-weighted bipartite

matching in order to achieve the monotonicity property. The rule is based on

the order 4p defined for augmenting paths. Let a sequence of vertices θ1 ◦ ... ◦ θn
denote an augmenting path of length n, which starts from ask θ1 and ends in bid

θn. We define 4p on all augmenting paths based on their endpoints:

θ1 ◦ ... ◦ θn 4p θ
′
1 ◦ ... ◦ θ′m iff (v′1, vn, s

′
1, e1, s

′
m, en) 6s (v1, v

′
m, s1, e

′
1, sn, e

′
m),
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where 6s is the lexicographic order of two equal length sequences of real numbers:

(r11, ..., r
1
n) 6s (r21, ..., r

2
n) iff ∃1≤j≤n(r

1
j ≤ r2j ∧ ∀1≤k<j(r

1
k = r2k)). We will use 4p

in MBM Allocation to distinguish augmenting paths that have the same weight-

increase.

Maximum-weighted Bipartite Matching Allocation:

Initialization:

• Encode reports θ in bipartite graph Gθ.

• Set the result matching M = ∅ for Gθ.

Recursion:

• AugPath = {p : ∆(p) > 0 and p is an M-augmenting path}.

• MaxAugPath = argmaxp∈AugPath∆(p).

• If MaxAugPath = ∅, stop recursion.

• Otherwise, let p̂ ∈ MaxAugPath s.t. p 4p p̂ for any p ∈MaxAugPath,

and M = M ⊕ p̂.

Output:

• All reports covered by M win and all the rest lose.

Theorem 4.10. Maximum-weighted Bipartite Matching Allocation is efficient.

Before proving Theorem 4.10, we show one essential lemma used in the proof. In

the rest of this chapter, π denotes MBM Allocation.
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Lemma 4.11. Maximum-weighted Bipartite Matching Allocation is efficient if

and only if the maximum-weighted bipartite matching maximizes the weight of

the matching.

Proof. The weight of the matching is
∑

πi(θ)=1∧i∈B vi −
∑

πi(θ)=1∧i∈S vi, which is

equal to
(

∑

πi(θ)=1∧i∈B vi +
∑

πi(θ)=0∧i∈S vi

)

−∑

i∈S vi.
∑

i∈S vi is fixed, so if the

weight of the matching is maximised, then
∑

πi(θ)=1∧i∈B vi +
∑

πi(θ)=0∧i∈S vi is also

maximized, and vice versa.

In order to prove Theorem 4.10, by Lemma 4.11, we shall prove that themaximum-

weighted bipartite matching indeed gives a maximum-weighted matching. To do

that, we need the two verified properties of themaximum-weighted bipartite match-

ing given in Lemmas 4.12 and 4.13 [Tarjan, 1983].

Lemma 4.12. Given graph G, let M be a matching of size k of maximum weight

among all matchings of size k in G. If we augment M by an augmenting path of

maximal weight-increase, then we obtain a matching of size k + 1 of maximum

weight among all matchings of size k + 1 in G.

Lemma 4.13. The maximum-weighted bipartite matching will augment along aug-

menting paths of successively non-increasing weight-increase.

Proof of Theorem 4.10: By Lemma 4.12, themaximum-weighted bipartite match-

ing will give a matching Mk of size k of maximum weight among all matchings

of size k after k augmentations. By Lemma 4.13, Mk is also maximum-weighted

among all matchings of size at most k if the weight-increase at the k-th augmen-

tation is positive. Therefore, the matching the allocation policy gives, until there

is no augmenting path of positive weight-increase, is maximum-weighted among

all matchings.

Theorem 4.14. Maximum-weighted Bipartite Matching Allocation is monotonic.
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Although we added a specific path selection rule based on 4p to avoid randomisa-

tion of MBM Allocation in most cases, there is still one situation where 4p cannot

help. When two types are the same and two augmenting paths of maximum pos-

itive weight-increase start from them and end in the same vertex, then 4p cannot

separate these two paths clearly, i.e. both of them have a chance of being selected

but none of them are guaranteed. Thus we assume that all type reports of sellers

(buyers) are different, i.e. two sellers (buyers) do not share the same type. Note

that there might be more than one augmenting path with the same endpoints, but

this does not affect the deterministic property of MBM Allocation, though it will

randomly select one of them to augment.

Proof of Theorem 4.14: By contradiction, without loss of generality, assume

that πi(θ) = 1 and πi(θ
′
i, θ−i) = 0 for some bids θi �i θ

′
i. Let θi be matched in

round k of π(θ), i.e some augmenting path ending with θi is of maximal weight-

increase in round k. Since θ and θ′i are both not matched before round k, so the

matchings are the same in both π(θ) and π(θ′i, θ−i) after any round < k. Let

θm ◦ ... ◦ θi be the augmenting path of maximal weight-increase selected in round

k of π(θ). Since θi �i θ
′
i, θm ◦ ... ◦ θ′i is an augmenting path in round k of π(θ′i, θ−i)

and θm ◦ ... ◦ θi 4p θm ◦ ... ◦ θ′i. Moreover, in round k, all augmenting paths in

π(θ′i, θ−i), except those that end with θ′i, are also augmenting paths in π(θ). Thus,

in round k of π(θ′i, θ−i), for any augmenting path p that does not end with θ′i,

p 4p θm ◦ ... ◦ θ′i, and all the rest end with θ′i. Therefore, an augmenting path

ending with θ′i should be selected in round k of π(θ′i, θ−i), which contradicts the

assumption.

4.4.2 Truthful Payment Policy

We have found an efficient allocation policy, MBM Allocation, and proved its

monotonicity property which is one of the two iff conditions to satisfy truthfulness.

What is left is to calculate the critical value for each winning trader.
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It is not practical to calculate the critical value as it’s defined in Definition 4.2.

Here we propose another approach which is inspired by the reverse of MBM Al-

location. A type θi is matched because there is an augmenting path of maximum

positive weight-increase ending with θi in some round of the matching procedure.

Therefore, if a type does not satisfy the above condition, it will not be matched.

The basis of our payment policy is to seek the least violation condition for each

winning type, i.e. the edge condition between winning and losing.

Given traders’ reports θ, if πi(θ) = 1, the payment for trader i, xi(θ), is defined in

terms of abridging and replacement paths starting from θi in the following, which

is called Min-Max Payment (MM Payment). xi(θ) = 0 if πi(θ) = 0.

Min-Max Payment:

xi(θ) =







minp∈D∪R v(ending(p)), if i ∈ S

maxp∈D∪R v(ending(p)), if i ∈ B

where

• D is a set of all abridging paths starting from θi,

• R is a set of all replacement paths starting from θi,

• and v(ending(p)) is the valuation of the ending vertex, the endpoint

other than θi, of path p.

For each winning ask, MM Payment gives the minimum valuation such that, if the

ask’s valuation were greater than or equal to that minimum, it can be removed

from the matching to (weakly) increase the weight of the matching, while for each

winning bid, the payment is the corresponding maximum. The set D gives all

possible ways to remove θi by abridging, while the set R gives all possible ways to
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substitute a free vertex for θi. Note that setD does not necessarily contain the path

that was used to match θi, as the path can be changed with other augmentations

after adding θi.

Theorem 4.15. Given bipartite graph Gθ and a winning type θi = (vi, si, ei)

determined by MBM Allocation, Min-Max Payment xi(θ) is equal to critical value

c(θi, θ−i).

To prove Theorem 4.15, we need the following two lemmas which can be found in

[Blum et al., 2006, Kozen, 1991].

Lemma 4.16. Given two matchings M and M ′, M ⊕M ′ consists of a collection

of vertex-disjoint alternating paths and even length cycles.

Proof. By the definition of matching, no vertex can have more than one incident

edge from M (or M ′), so no vertex can have more than two incident edges from

M ⊕M ′.

Lemma 4.17. Given two matchings M and M ′, a vertex v is an endpoint of a

path in M ⊕M ′ if and only if it is matched in either M or M ′ but not both.

Proof. If vertex v is an endpoint of an alternating path, i.e. there is only one

edge incident to v in M ⊕M ′, then v can only be matched in either M or M ′ but

not both. If vertex v is only matched in only one of M and M ′, then v must be

contained in M ⊕M ′ with only one edge incident to it.

Now we are ready to prove Theorem 4.15.

Proof of Theorem 4.15: Without loss of generality, assume θi = (vi, si, ei) is

a winning ask, and let xi = xi(θ) and ci = c(θi, θ−i). To prove xi = ci, by the

definition of ci, we need to show that for any θ′i = (v′i, si, ei):

1. ∀θ′i:πi(θ′i,θ−i)=1(v
′
i ≤ xi).
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2. ∃xi−δ<v′i<xi(πi(θ
′
i, θ−i) = 1) for any δ > 0.

Let M be the matching of π(θ) and M ′ be that of π(θ′i, θ−i). We will prove these

two conditions one by one blow.

Part I: By contradiction, assume that πi(θ
′
i, θ−i) = 1 and v′i > xi. Let AM (BM) be

all the matched asks (bids) in M , and AM ′ (BM ′) be all the matched asks (bids) in

M ′. Since π is monotonic and M and M ′ are maximum-weighted, it follows that

all matched asks in M except for θi must be matched in M ′, i.e. AM \{θi} ⊂ AM ′ ,

and all the matched bids in M ′ must be matched in M , i.e. BM ′ ⊆ BM . Thus

inequalities |AM | − 1 < |AM ′| and |BM ′| ≤ |BM | hold. Moreover, |AM | = |BM |

and |AM ′| = |BM ′|, so we get |M | = |M ′|, BM = BM ′, and AM \{θi} = AM ′ \{θ′i}.
Therefore, by Lemma 4.16 and 4.17, there is only one alternating path ponly =

θi ◦ ... ◦ θ′i in M ⊕M ′, and all the rest are cycles. If all vertices reachable from θi

through M-abridging or M-replacement paths are also reachable from θ′i through

M ′-abridging or M ′-replacement paths, then, since v′i > xi, there is at least one

M ′-abridging or M ′-replacement path of positive weight-increase by which we can

remove θ′i to increase the weight of the matching, which contradicts the choice of

M ′.

We now prove that the above reachability condition holds. (1). For any vertex

v except for θi (θ
′
i) in ponly, the path between θi (θ

′
i) and v is either an abridging

or a replacement path with respect to M (M ′). (2). Any vertex v′ not in ponly

that is reachable from θi by an abridging or replacement path p is also reachable

from θ′i through the same type of path p′. Since p must be connected with ponly

and for any edge e ∈ p and e 6∈ ponly, if e ∈ M and e 6∈ M ′, there must be an

even length cycle that contains e in M ⊕M ′, and vice versa, i.e. if e connects

vertices v1 and v2 in p, there is always a corresponding edge or path connecting

v1 and v2 in p′. For instance, Figure 4.2 shows one alternating path (a,b,c,d,e)

and a cycle (h,i,j,k) of M ⊕M ′: thin lines and thick lines belong to M and

M ′ respectively, while the double line between f and g is in both matchings and
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Figure 4.2: Reachability Example

dashed lines are free. It is easy to see that all vertices reachable from a through a

M-augmenting or M-replacement path is also reachable from e by a corresponding

path with respect to M ′.

Part II: To prove the second condition, we will prove πi(θ
′
i, θ−i) = 1 for any v′i < xi.

By contradiction, assume that v′i < xi and πi(θ
′
i, θ−i) = 0. By Lemma 4.17 there is

a path pθi ∈M ⊕M ′ starting from θi and ending with θn in either M or M ′. Since

xi ≤ vn by the definition of xi and v′i < xi as we assumed, we can substitute θ′i for

θi in pθi to get an M ′-alternating path pθ′i . If θn is matched in M , then pθ′i is an

M ′-augmenting path and by Lemma 4.9 ∆(pθ′i) = vn − v′i > 0, which contradicts

the choice of M ′. Thus θn is a matched ask in M ′, and pθ′i is an M ′-replacement

path. Since M ′ is a maximum-weighted, by Lemma 4.9 ∆(pθ′i) = vn− v′i ≤ 0. Put

all results together, we get contradiction vn ≤ v′i < xi ≤ vn.

Another appealing property of Min-Max payment is its independence from the

allocation algorithm. We show that Min-Max payment results in the same pay-

ments as the most desirable VCG payment (Clarke pivot payment), but it does

not require the recall of the allocation algorithm. Clarke pivot payment is de-

fined as xi(θ) = V π(θ−i) − V π
−i(θ), where V π(θ) is the social value given traders’

report profile θ and the allocation policy π, and V π
−i(θ) is the social value without

counting trader i.

Proposition 4.18. Given traders’ report θ and efficient and monotonic allocation

policy π, for each trader i, Min-Max payment xMM
i (θ) is equal to Clarke pivot

payment xC
i (θ).
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Proof sketch. We need to prove that for each winning type θi if we remove θi from

the maximum-weighted matching M of bipartite graph Gθ by using the path p

that gives xMM
i (θ), the result matching M ′ is also maximum-weighted in Gθ−i

. By

contradiction, assume that M ′ is not maximum-weighted, we will conclude either

M is not maximum-weighted or path p contradicts the definition of Min-Max

payment.

Corollary 4.19. Double auction mechanism (MBM Allocation,MM Payment) is

efficient, incentive-compatible and individual-rational, i.e. traders never receive

negative utility.

Figure 4.3 shows an example of the double auction we have defined, where the

number beside each vertex is the valuation of the vertex and the value inside

parentheses is the payment.

Figure 4.3: MBM Allocation and MM Payment

4.4.3 Computational Complexity

We further show that both our allocation policy and payment policy can be im-

plemented in polynomial time and, more importantly, our payment can be imple-

mented much faster than Clarke pivot payment.

Theorem 4.20. Let n be the number of traders’ reports. MBM Allocation can be

implemented in time O(n3), and Min-Max Payment can be implemented in time

O(n3).
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The result given in Theorem 4.20 is significant because, to the best of my knowl-

edge, the implementations of Clarke pivot payment cannot avoid the recall of the

allocation algorithm [Nisan et al., 1999, Sandholm, 2003]. In other words, for each

winning report θi, π needs to search another allocation on the remaining reports

θ−i. Therefore, it will take O(n) times of the allocation time in this model, i.e.

O(n4) with MBM Allocation.

Proof of Theorem 4.20: Bipartite graph representation of the reports takes at

most n2/4 time by checking each pair of ask and bid, so there will be at most

m = n2/4 edges. According to [Galil, 1986], finding an augmenting path of max-

imal weight increase can be solved by Dijkstra’s algorithm taking O(m+ n log n)

time. There are at most n/2 rounds, so MBM Allocation can be implemented in

time O(n3). For each winning type, MM Payment can be done by depth-first or

breadth-first search which takes O(n + m) time. There are at most n winning

types, so MM Payment can also be implemented in time O(n3).

4.5 Summary

We have developed an efficient and truthful double auction mechanism (i.e. a

VCG mechanism) in a model where multiple sellers and multiple buyers exchange a

commodity and each trader has a privately observed type consisting of a valuation

of a commodity and a time period which constrains when the commodity can be

exchanged. The mechanism is characterised by an allocation policy and a payment

policy. By encoding the model in a bipartite graph, we efficiently adapted the

maximum-weighted bipartite matching to get an efficient and monotonic allocation

policy. We also developed a truthful payment policy that can be implemented

faster than Clarke pivot payment while resulting in the same payments as Clarke

pivot payment.
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Myerson and Satterthwaite [1983] proved that there is no efficient, incentive-

compatible and individual-rational bilateral trade without outside subsidies, i.e. a

market with our mechanism will run in deficit. To avoid this deficit, we need to

compromise between efficiency and truthfulness. There are two possible remedies:

either relaxing efficiency, or giving up incentive compatibility, as investigated by

McAfee [1992] and Wurman et al. [1998] in single-valued domains. Finding how

these compromises can lead to a realistic mechanism under this model is worth

further investigation.

Another direction for the future work is to further extend our framework to allow

generic constraints on orders. Some real-world markets allow or have a demand for

conditional orders. For instance, a trader, in day trading, would send a contingent

order, stop order or exit order to his or her broker or the market.



Chapter 5

Multi-unit Double Auction under

Group Buying

Chapter 4 has shown the difficulty of the auction design problem for double auc-

tion with temporal constraints. This chapter studies the design problem in an

environment in which traders’ valuations pose the challenge to the design.

This chapter deals with the market situation when multiple sellers sell one kind

of product to a number of buyers and a seller is willing to give bigger discount

if more buyers group together to buy the product from the seller, which is called

group buying. Group buying is a business model in which a number of buyers

join together to order a product in a certain quantity in order to gain a desirable

discounted price. Such a business model has recently received significant attention

from researchers in economics and computer science, mostly due to its successful

application in online businesses, such as Groupon. We consider this problem as a

multi-unit double auction. We first examine two deterministic mechanisms that

are budget balanced, individually rational and only one-sided truthful, i.e. it is

truthful for either buyers or sellers. Then we find that, although there exists a

‘trivial’ (non-deterministic) mechanism that is (weakly) budget balanced, individ-

ually rational and truthful for both buyers and sellers, such a mechanism is not

57
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achievable if we further require that both the trading size and the payment are

neither seller-independent nor buyer-independent. In addition, we show that there

is no budget balanced, individually rational and truthful mechanism that can also

guarantee transaction size.

Although have seen difficulties for designing certain mechanisms in this model, real

environments can be more complicated than that. In real group buying markets,

each trader receiving the discounted product might return in the future and also

influence their friends to try this product; that is, the advertising effect, which has

not been well studied.

5.1 Introduction

Group buying (or collective buying power) is when a group of consumers come

together and use the old rule of thumb, there is power in numbers, to leverage

group size in exchange for discounts. Led by Groupon, the landscape for group

buying platforms has been growing tremendously during last few years. Because of

the advent of social networks, e.g. Facebook, this simple business concept has been

leveraged successfully by many internet companies. Taking the most successful

group buying platform Groupon for example, a group buying deal is carried out

in the following steps:

1. the company searches good services and products (locally) that normally are

not well-known to (local) consumers,

2. the company negotiates with a target merchant for a discounted price for

their services and the minimum number of consumers required to buy their

services in order to get this discount,
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3. the company promotes the merchant’s services with the discounted price and

the minimum number of buyers required to make the deal within a period,

say two days,

4. if the number of consumers willing to buy the services reaches the minimum

during that period, then all the consumers will receive the services with the

discounted price, and the company and the merchant will share the revenue.

Otherwise, no deal and no loss for any party, especially the merchant and

consumers.

All participants benefit from successful group buying deals: consumers enjoy good

services with lower prices, merchants promote their services and most likely more

consumers will buy their services with normal prices in the future (i.e. group

buying also plays the role of advertising), and the company providing the platform

benefits from merchants’ revenue.

Besides its simple concept and its successful business applications, group buying is

not well studied in academia [Anand and Aron, 2003, Arabshahi, 2011, Byers et al.,

2011, Edelman et al., 2011]. In particular, the combination of collective buying

power and advertising challenges theoretical analysis. In this work, we extend the

simple concept, used by Groupon, to allow merchants (or sellers) and consumers

(or buyers) to express more of their private information. More specifically, instead

of one single discounted price for selling a certain number of units of a product,

sellers will be able to express different prices for selling different amounts of the

product. Buyers will be able to directly reveal the amount they are willing to pay

for a product, other than just show interest in buying a product coming with a

fixed price. To that end, we do not just enhance the expression of traders’ private

information, but also reduce the number of no-deal failures that happen when the

number of buyers willing to purchase a product does not reach the predetermined

minimum on the Groupon platform. Moreover, we will allow multiple sellers to

build competition for selling identical products.
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Given the above extension, what we get is a multi-unit double auction, where there

are multiple sellers and multiple buyers exchanging one commodity and each trader

(seller or buyer) supplies or demands multiple units of a commodity. Different

from the multi-unit double auctions previously studied [Chu, 2009, Huang et al.,

2002], the focus of this model is on group buying and we assume that sellers have

unlimited supply and a seller’s average unit price is decreasing (non-increasing)

when the number of units sold is increasing.

Due to revelation principle, we only consider mechanisms where traders directly

report their types. We propose/examine some mechanisms in terms of, especially,

budget balance, individual rationality, and truthfulness, which are three important

criteria we usually try to achieve in double auction design. Budget balance guar-

antees that the market owner running the auction does not lose money. Individual

rationality incentivises traders to participate in the auction, as they will never

get negative utility/benefit for participating in the auction. Truthfulness makes

the game much easier for traders to play, because the best strategy can be easily

computed for each trader, which is just his true type. Truthfulness also plays an

important role for achieving other properties based on traders’ truthful types, e.g.

efficiency (i.e. social welfare maximisation). We will not measure social welfare in

this model, because of unlimited supply. However, we will consider the number of

units exchanged, called trading size, which is part of market liquidity, indicating

the success of an exchange market.

We find that, even without considering other criteria, budget balance, individual

rationality and truthfulness are hard to be satisfied together in this model. We

show that there is no budget-balanced, individually rational and truthful auction,

given that both the trading size and the payment are neither seller-independent

nor buyer-independent. We say a parameter of a mechanism is seller-independent

(buyer-independent) if its value does not depend on sellers’ (buyers’) type re-

ports. However, by allowing either the trading size or the payment to be seller-

independent or buyer-independent, we will be able to design auctions satisfying
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budget balance, individual rationality and truthfulness at the same time. Even

under the non-predetermination constraint, we will propose two mechanisms that

are budget-balanced, individually rational and one-sided truthful, i.e. truthful for

either buyers or sellers. In addition, we prove that there is no budget-balanced,

individually rational and truthful mechanism that can also guarantee trading size.

This chapter is organised as follows. After a brief introduction of the model in

Section 5.2, we propose two budget-balanced, individually rational and partially

truthful (deterministic) mechanisms in Section 5.3 and 5.4. Following that, we

further study the existence of (weakly) budget-balanced, individually rational and

truthful mechanisms in Section 5.5. Finally, we conclude in Section 5.6 with related

and future work.

5.2 The Model

We study a multi-unit double auction where multiple sellers and multiple buyers

exchange one commodity. Each seller supplies an unlimited number of units of a

commodity and each buyer requires a certain number of units of the commodity.

Each trader (seller or buyer) i has a privately observed valuation function (aka

type) vi : Z
+ → R

+ where the input of the function is the number of units of the

commodity and the output is the valuation for those units together.

We assume that sellers’ valuation is monotonic: vi(k) ≤ vi(k + 1), and satisfies

group buying discount: vi(k)
k
≥ vi(k+1)

k+1
. That is, a seller’s valuation is non-

decreasing as the number of units to sell increases, while the mean unit valuation

is non-increasing (so buyers can get a discount if the mean valuation is decreas-

ing). One intuition for group buying discount constraint is that the average unit

production cost may decrease when many units can be produced at the same time.

For a buyer i of type vi requiring ci > 0 units, vi satisfies vi(k) = 0 for all k < ci

and vi(k) = vi(ci) > 0 for all k ≥ ci. The first constraint of buyers’ valuation
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states that their demands cannot be partially satisfied. The second assumption

states that there is no cost for buyers to deal with extra units allocated to them

(free disposal). Following [Chu, 2009, Huang et al., 2002], we assume that ci of

buyer i is common knowledge. Without loss of generality, we will assume that

ci = 1 for each buyer i to simplify the rest of the analysis, and the results under

this assumption can be easily extended to the general case.

To participate in an auction, each trader is required to report some information

(often related to his type) to the auctioneer (i.e. the market owner). Because of

the revelation principle [Myerson, 2008b], we will focus on auctions that require

traders to directly report their types. However, traders do not necessarily report

their true types.

Let S be the set of all sellers, B be the set of all buyers, and T = S ∪ B. We

assume that S ∩B = ∅. Let v = (vi)i∈T denote the type profile of all traders. Let

v−i = (v1, v2, · · · , vi−1, vi+1, · · · , vn) be the type profile of all traders except trader

i. Given trader i of type vi, we refer to R(vi) as the set of all possible type reports

of i. Similarly, let R(v) be the set of all possible type profile reports of traders

with type profile v. We will use vB = (vi)i∈B to denote the type profile of buyers,

and vS = (vi)i∈S for sellers.

Definition 5.1. A multi-unit double auction (MDA) M = (π, x) consists of

an allocation policy π = (πi)i∈T and a payment policy x = (xi)i∈T , where,

given traders’ type profile report v, πi(v) ∈ Z
+ indicates the number of units that

seller (buyer) i sells (receives), and xi(v) ∈ R
+ determines the payment paid to or

received by trader i.

Note that the above definition of MDA includes only deterministic MDAs, i.e.

given a type profile report, the allocation and payment outcomes are deterministic.

We will also consider non-deterministic/random MDAs where the outcomes are

random variables. A non-deterministic MDA can be described as a probability

distribution over deterministic MDAs.
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Given an MDAM = (π, x) and type profile v, we say trader i wins if πi(v) > 0,

loses otherwise. An allocation π is feasible if
∑

i∈B πi(v) =
∑

i∈S πi(v) and for all

S, B and v. An MDAM = (π, x) is feasible if π is feasible. A non-deterministic

MDA is feasible if it can be described as a probability distribution over feasible

deterministic MDAs. Feasibility guarantees that the auctioneer never takes a short

or long position in the commodity exchanged in the market. In the rest of this

chapter, only feasible MDAs are discussed.

Given traders’ type profile v, their type profile report v̂ ∈ R(v) and deterministic

MDAM = (π, x), the utility of trader i with type vi is defined as

u(vi, v̂, (π, x)) =







vi(πi(v̂))− xi(v̂), if i ∈ B.

xi(v̂)− vi(πi(v̂)), if i ∈ S.

ConsideringM might be non-deterministic, we use E[u(vi, v̂, (π, x))] to denote the

expected utility of trader i.

Definition 5.2. An MDAM = (π, x) is truthful (or incentive-compatible) if

E[u(vi, (vi, v̂−i), (π, x))] ≥ E[u(vi, v̂, (π, x))] for all i ∈ T , all v̂ ∈ R(v), all v.

In other words, a mechanism is truthful if reporting type truthfully maximises

each trader’s utility. We say an MDAM is buyer-truthful (seller-truthful) if

M is truthful for at least all buyers (sellers).

An MDA is budget-balanced (BB) if the payment received from buyers is equal

to the payment paid to sellers, and it is weakly budget-balanced (WBB) if

the payment received from buyers is greater than the payment paid to sellers. An

MDA is individually rational (IR) if it gives its participants non-negative utility.

Because of unlimited supply, we will not be able to measure social welfare in this

model, as it will be unbounded before and after the auction. Market liquidity, as

an important indicator of a successful exchange market, will be considered. We

will check one of the important measures of market liquidity, the number of units

exchanged, called trading size.
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Given the type profile report v, assume that vB1 (1) ≥ vB2 (1) ≥ · · · ≥ vBm(1), we

define the optimal trading size kopt(v) as

kopt(v) = max
k

(
k

∑

i=1

vBi (1) ≥ min vSj (k)). (5.1)

That is, optimal trading size is the maximal number of units that can be exchanged

in a (weakly) budget-balanced auction where the payment of a winning trader is

his valuation for receiving/selling the number of units allocated to him. As we

will see, it is often not possible to achieve the optimal trading size, if we consider

other properties such as truthfulness, individual rationality and budget balance at

the same time. Therefore, we define the following notion to measure an MDA’s

trading size.

Definition 5.3. An MDA M is c-competitive if the (expected) trading size

kM(v) of M is at least kopt(v)
c

, for all type profile report v. We say M is com-

petitive if M is c-competitive for a constant c. We refer to c as competitive

ratio.

Moreover, other than following Definition 5.2, we will use Proposition 5.4 to anal-

yse the truthfulness of an MDA. Proposition 5.4 is based on Proposition 9.27 of

[Nisan et al., 2007], and its proof directly follows the proof there.

Proposition 5.4 (Proposition 9.27 of [Nisan et al., 2007]). An MDAM = (π, x)

is truthful if and only if it satisfies the following conditions for every trader i with

type vi and every v−i

• If E[πi(vi, v−i)] = E[πi(v̂i, v−i)], then E[xi(vi, v−i)] = E[xi(v̂i, v−i)]. That is,

the payment of i does not depend on vi, but only on the alternative allocation

result.

• E[u(vi, v, (π, x))] ≥ E[u(vi, (v̂i, v−i), (π, x))] for all v̂i ∈ R(vi). That is, the

expected utility of i is optimised byM.
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5.3 A BB, IR and Buyer-truthful MDA

A Vickrey auction is a truthful and individually rational one-sided auction for

exchange of one item, where traders report their private types (valuations for the

item), and in which the trader with the highest valuation wins, but the price

paid is the second-highest valuation. We apply a similar principle in this section

and propose an MDA, called Second Price MDA. We show that this auction is

budget-balanced and individually rational but only buyer-truthful.

Second Price MDA M2nd

Given type profile report v = (vB, vS), assume that vB1 (1) ≥ vB2 (1) ≥ · · · ≥

vBm(1).

1. Let w(k) = min argmini v
S
i (k) and p(k) = mini 6=w(k)

vSi (k)

k
or ∞ if there is

only one seller.

2. Let k∗ = max{k|vBk (1) ≥ p(k)}.

3. The first k∗ buyers, i.e. buyers of valuation vB1 , v
B
2 , · · · , vBk∗, receive one

unit of the commodity each and each of them pays p(k∗).

4. Seller w(k∗) sells k∗ units of the commodity and receives payment p(k∗) ·

k∗.

5. The remaining traders lose without payment.

Given the number of units going to be exchanged k,M2nd selects the seller with

lowest valuation for selling k units to win (i.e. w(k)) and the payment is the second

lowest valuation (i.e. p(k)·k). k∗ ofM2nd, the trading size, is the maximal number

of units that can be exchanged, given that each winning buyer pays the mean unit

price p(k∗). It is evident that the profit of the auctioneer running M2nd will be
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zero and no participant will get negative utility, i.e. M2nd is budget-balanced and

individually rational.

Lemma 5.5. For any k ≥ 1, p(k) ofM2nd satisfies p(k+1) ≤ p(k) and p(k+1) ·

(k + 1) ≥ p(k) · k.

Proof. Since sellers’ valuation satisfies group buying discount, i.e.
vSi (k+1)

k+1
≤ vSi (k)

k
,

we get p(k+1) = mini 6=w(k+1)
vSi (k+1)

k+1
≤ mini 6=w(k)

vSi (k)

k
= p(k). In other words, the

mean unit price is non-increasing as the number of units sold together increases.

Because of vi(k + 1) ≥ vi(k) for each seller i, we conclude p(k + 1) · (k + 1) =

mini 6=w(k+1) v
S
i (k + 1) ≥ mini 6=w(k) v

S
i (k) = p(k) · k.

Theorem 5.6. M2nd is buyer-truthful.

Proof. The auction result of M2nd for buyer i is either receiving one unit with

certain payment or receiving nothing with no payment. If i received one unit,

then vBi (1) ≥ p(k∗) and the payment of i is p(k∗) which is independent of vBi (1).

Otherwise, we know that vBi (1) < p(k∗) and the payment is zero for i. Therefore,

the first property of Lemma 5.4 is satisfied for all buyers.

In order to prove truthfulness, we need to show that the utility of each buyer is

maximised, i.e. the payment is minimised, byM2nd. For all buyers who received

a unit, the payment p(k∗) is the same for all of them. If any of the winning buyers

with valuation vBi (1) reported v̂Bi (1) < p(k∗) ≤ vBi (1), this buyer will not win.

Moreover, from Lemma 5.5, we know that p(k∗) is minimal as k∗ is maximal.

Therefore, p(k∗) is the minimum valuation for buyers to win inM2nd. Thus, the

payment p(k∗) for all winning buyers is minimised. This also holds for losing

buyers.

Theorem 5.7. M2nd is not seller-truthful.

Proof. The auction result ofM2nd for seller i is either selling k units with payment

p(k) for some k > 0 or selling nothing with no payment. For each k > 0, if seller
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i successfully sells k units, then the payment p(k) · k received by i is the second

lowest valuation of sellers for selling k units together and is independent of i’s

type. If seller i loses, the payment is zero for i. Therefore, the first property of

Lemma 5.4 is also satisfied for all sellers.

The reason whyM2nd is not truthful for sellers is that the utilities of sellers might

not be maximised. For instance, assume that k1 and k1 − 1 satisfy the condition

vBk (1) ≥ p(k), and w(k1) = w(k1−1) = i. If p(k1)·k1−vSi (k1) < p(k1−1)·(k1−1)−

vSi (k1− 1), then i would prefer selling k1− 1 units other than k1 units. Therefore,

if i sells k1 units with payment p(k1) · k1, she is incentivised to manipulate the

auction in order to sell only k1− 1 units with more utility. The manipulation will

be successful if the third lowest seller valuation for selling k1 units, say vSj (k1),

satisfies
vSj (k1)

k1
> vBk1(1) (by simply misreporting v̂Si (k1) ≥ vBk1(1)).

5.4 A BB, IR and Seller-truthful MDA

In the last section, we showed that a simple second price MDA is not truthful,

because sellers’ utilities are not maximised. However, in this section, we find that if

we simply updateM2nd such that sellers’ utilities are maximised, then buyers will

sacrifice. The main update is that the determination of the trading size considers

the winning seller’s utility.

Second Price plus Seller Utility Maximisation MDA M+
2nd

Given type profile report v = (vB, vS), assume that vB1 (1) ≥ vB2 (1) ≥ · · · ≥

vBm(1).

1. Let w(k) = min argmini v
S
i (k) and p(k) = mini 6=w(k)

vSi (k)

k
or ∞ if there is

only one seller.
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2. Let k∗ = max{k|vBk (1) ≥ p(k)}, and i∗ = w(k∗).

3. Let K = {k|vBk (1) ≥ p(k)}, and K∗ is the least set such that i∗ ∈ K∗

and K∗ ⊇ {k|k = max(K \K∗) ∧ w(k) = i∗ ∧ vBminK∗(1) <
vS
3rd

(minK∗)

minK∗ },
where vS3rd(k) is the third lowest valuation of sellers for selling k units

and it is ∞ if there are less than three sellers.

4. Let k∗
+ = max argmaxk∈K∗(p(k) · k − vSi∗(k)).

5. The first k∗
+ buyers, i.e. buyers of valuation vB1 , v

B
2 , · · · , vBk∗

+
, receive one

unit of the commodity each and each of them pays p(k∗
+).

6. Seller i∗ sells k∗
+ units of the commodity and receives payment p(k∗

+) ·k∗
+.

7. The rest of the traders lose without payment.

k∗ and the winning seller i∗ ofM+
2nd is the same as that inM2nd. Set K contains

all possible numbers of units that can be exchanged without sacrificing budget

balance. Set K∗ contains all k points that seller i∗ can manipulate and force the

auctioneer to choose some k∗ ∈ K∗ if M2nd is used. The reason is that, for all

k ∈ K∗ except the minimum (minK∗), seller i∗ is the only winner, i.e. without

seller i∗, there is no other seller who can win at those trading sizes. Therefore,

M+
2nd chooses k∗

+ ∈ K∗, as the final trading size, such that seller i∗’s utility is

maximised among all k ∈ K∗. It is evident thatM+
2nd is also budget-balanced and

individually rational.

Theorem 5.8. M+
2nd is seller-truthful but not buyer-truthful.

Proof. Regarding truthfulness of sellers, firstly, their payments are independent of

their valuations. Secondly, their utilities are maximised, i.e. they cannot misreport

their valuations to get higher utilities. For winning seller i∗, K∗ contains all

winning k points where i∗ is the winner and she can manipulate to get a winning
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point giving her the highest utility. However, seller i∗ cannot misreport to win at

other trading sizes not included in K∗. This is because another seller will win at

either minK∗ or max(K \K∗) if seller i∗ chooses to not win at any point in K∗.

Since M+
2nd selects the winning point k∗

+ ∈ K∗ that gives i∗ the highest utility

she could possibly get with misreporting, there is no reason for i∗ to misreport.

For a losing seller i, if i misreported and won at k∗, then i has to misreport

v̂Si (k
∗) ≤ vSi∗(k

∗) ≤ vSi (k
∗) and the K∗ for i will be {i∗}. Therefore, i will get

non-positive utility, vSi∗(k
∗)− vSi (k

∗), in order to win at point k∗. If i misreported

and won at a point k′ > k∗, then i has to misreport v̂Si (k
′) ≤ vBi′ (1) · k′ ≤ vSi (k

′)

and the new unit price p̂(k′) must satisfy that
v̂Si (k

′)

k′
≤ p̂(k′) ≤ vBi′ (1). Thus the

utility for losing seller i to win at point k′ will be p̂(k′) ·k′−vSi (k
′) ≤ 0. Therefore,

truthfulness also holds for losing sellers.

It is evident thatM+
2nd is not truthful for buyers because their payments p(k∗

+) ≥
p(k∗) (Lemma 5.5). That is, buyers of valuation vB1 , v

B
2 , · · · , vBk∗ could misreport

their valuations to prevent seller i∗ winning at any point k∗
+ < k∗, which might

give them higher utilities.

Proposition 5.9. The utility loss of winning buyer i inM+
2nd, compared with the

utility i can achieve in M2nd, is not more than
k∗−k∗+
k∗
+

of the payment i can get

when i participates inM2nd.

Proof. According to Lemma 5.5, we get p(k∗) · k∗ ≥ p(k∗
+) · (k∗

+). Therefore, for

a winning buyer i of type vi inM+
2nd, i’s utility uM+

2nd
= vi(1)− p(k∗

+), while the

utility i will get in M2nd is uM2nd
= vi(1) − p(k∗). So we get uM2nd

− uM+

2nd
=

p(k∗
+)− p(k∗) ≤ k∗−k∗

+

k∗
+

p(k∗).
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5.5 Existence of (W)BB, IR and Truthful MDAs

Following the results in previous sections, we will demonstrate in this section

that there are multi-unit double auctions that are (weakly) budget-balanced, in-

dividually rational and truthful. However, we will also prove that there does not

exist a (weakly) budget-balanced, individually rational and truthful MDA, where

both the trading size and the payment are neither seller-independent nor buyer-

independent.

Proposition 5.10. There exists a (weakly) budget-balanced, individually rational,

and truthful multi-unit double auction.

Proof. The fixed pricing MDA described in Auction 1 is BB, IR and truthful.

Given a predetermined transaction price p,Mfixed first calculates the total number

k1 of buyers whose valuations are at least p, then calculates the maximal number

k∗ of units that a seller can sell, with non-negative utility, under unit price p,

given that k∗ ≤ k1. After it calculates all the winning candidates of both sides,

candidates from the same side win with the same probability. It is evident that

this auction is budget-balanced and individually rational.

Regarding truthfulness, firstly, payment p does not depend on any trader. Sec-

ondly, all buyers whose valuation for one unit is at least p will win with the same

probability with payment p, so their utilities are maximised if their winning prob-

ability k∗

k1
is maximised. Buyer i of vBi (1) ≥ p will not report v̂Bi (1) < p as i’s

winning probability will be reduced. Also buyer i of vBi (1) < p will not report

v̂Bi (1) ≥ p because he will get a negative expected utility. Therefore, k1 is fixed

for a given type profile report and no buyer is incentivsed to change it. Moreover,

k∗ is maximised. Thus, k∗

k1
is maximised and buyers’ utilities are maximised. A

similar analysis applies to sellers.

Auction 1 (Fixed Pricing MDA Mfixed). Given predetermined transaction price

p and type profile report v = (vB, vS),
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1. let k1 = |{i|vBi (1) ≥ p}|,

2. let k∗ = max{k|k ≤ k1 ∧ vSi (k)

k
≤ p for some i}, and k2 = |{i| v

S
i (k

∗)

k∗
≤ p}|,

3. randomly select k∗ winning buyers from {i|vBi (1) ≥ p}, i.e. each buyer

i ∈ {i|vBi (1) ≥ p} wins with probability k∗

k1
,

4. randomly choose one winning seller from {i| vSi (k∗)
k∗

≤ p}, i.e. each seller

i ∈ {i| vSi (k∗)
k∗
≤ p} wins with probability 1

k2
,

5. each winning buyer receives one unit of the commodity and pays p, the

winning seller sells k∗ units and receives payment p ∗ k∗, and the remaining

traders lose with no payment.

Note that Mfixed is non-deterministic and the payment p does not depend on

any trader. It is not hard to check that similar auctions with two fixed prices

ps, pb such that ps ≤ pb and ps is the unit price for winning sellers and pb for

winning buyers is (W)BB, IR and truthful. Other than fixed pricing MDAs, there

are (W)BB, IR and truthful MDAs where payments are not predetermined. For

instance, a simple variant ofMfixed described in Auction 2 is one such mechanism

and it is clear that Msingle is BB, IR and truthful. However, there is no MDA

that is (W)BB, IR and truthful, given that both the trading size and the payment

are neither seller-independent nor buyer-independent. We say a parameter of an

MDA is seller-independent (buyer-independent) if the value of the parameter does

not depend on sellers’ (buyers’) type reports.

Definition 5.11. Given MDA M, a parameter d of M, and type profile v =

(vB, vS), we say d is trader-independent if the value of d, denoted by dM(·),

satisfies dM(v̂) = dM(v̄) for all v̂, v̄ ∈ R(v). We say d is seller-independent if

dM((v̂B, v̂S)) = dM((v̂B, v̄S)) for all v̂B ∈ R(vB), all v̂S, v̄S ∈ R(vS). We say d is

buyer-independent if dM((v̂B, v̂S)) = dM((v̄B, v̂S)) for all v̂B, v̄B ∈ R(vB), all

v̂S ∈ R(vS).
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A parameter of an MDA is trader-independent if and only if it is seller-independent

and buyer-independent. For instance, p ofMfixed is trader-independent, and p of

Msingle is seller-independent.

Auction 2 (One-sided Pricing MDA Msingle). Given the type profile report v =

(vB, vS),

1. let p be the ⌈m
2
⌉-th highest of vBi (1)s, where m is the total number of buyers,

2. let k1 = |{i|vBi (1) > p}|,

3. let k∗ = max{k|k ≤ k1 ∧ vSi (k)

k
≤ p for some i}, and k2 = |{i| v

S
i (k

∗)

k∗
≤ p}|,

4. randomly select k∗ winning buyers from {i|vBi (1) > p}, i.e. each buyer

i ∈ {i|vBi (1) > p} wins with probability k∗

k1
,

5. randomly choose one winning seller from {i| vSi (k∗)
k∗

≤ p}, i.e. each seller

i ∈ {i| vSi (k∗)
k∗
≤ p} wins with probability 1

k2
,

6. each winning buyer receives one unit of the commodity and pays p, the

winning seller sells k∗ units and receives payment p ∗ k∗, and all the rest of

the traders lose with no payment.

Theorem 5.12. There is no (weakly) budget-balanced, individually rational and

truthful multi-unit double auction, where both the trading size and the payment are

neither seller-independent nor buyer-independent.

Before we give the proof of Theorem 5.12, we first prove some lemmas that are

going to be used for the proof. Lemma 5.13 says that an IR and truthful MDA

cannot have price discrimination. An MDA has price discrimination if buyers

(sellers) pay (receive) different payments for identical goods or services. For in-

stance, when two buyers pay different prices for receiving one unit of the same

commodity in a deterministic MDA, this is price discrimination.

Lemma 5.13. An individually rational multi-unit double auction with price dis-

crimination is not truthful.
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Proof. Because of individual rationality, the expected payments for all winning

buyers (sellers) must be not over (under) their valuations.1 If the expected pay-

ments are not the same between winning buyers/sellers, then a winning buyer

(seller) with high (low) expected payment will have a chance to manipulate the

auction in order to get a low (high) expected payment by, for example, reporting

the same valuation as that of a winning buyer (seller) receiving relatively a lower

(higher) expected payment.

From Lemma 5.13, we conclude that an individually rational and truthful MDA

must give the same (expected) payment for all winning buyers/sellers, and give

no payment for all losing traders.

Lemma 5.14. All winning sellers in a truthful multi-unit double auction sell the

same expected number of units.

Proof. According to Lemma 5.13, we know that all winning sellers receive the

same expected payment for selling each unit. So their utilities will be higher if

they sell more units. If the expected number of units to be sold is not the same

among winning sellers, then a seller selling less units is incentivised to manipulate

the auction in order to sell more units by simply misreporting his valuation as the

seller selling relatively more units.

Proof of Theorem 5.12. We first assume that there is such MDAM, and then we

end up with a contradiction.

Let ps and pb be the payment (unit price) for winning sellers and winning buyers

respectively. According to Lemma 5.14, without loss of generality, we assume that

M selects at most one winning seller. Assume the trading size is k. Let vBmin be the

1We consider expected payment to check price discrimination, because if an MDA is non-
deterministic and it can assign different payments to winning buyers/sellers. However, if a
non-deterministic MDA is individually rational and truthful, then the expected payment will be
the same for all winning buyers/sellers and the prices should be randomly chosen from some
range independent of winning traders’ valuations. A non-deterministic MDA is not considered
price discrimination if the expected payment is the same for all winning/losing buyers/sellers.
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minimum valuation (for one unit) of all winning buyers, and vBmax be the maximum

valuation of all losing buyers (vBmax = 0 if there is no losing buyer). Let vSwin be

the valuation of the winning seller for selling k units, and vSmin be the minimum

valuation of all losing sellers for selling k units (vSmin = ∞ if there is no losing

seller). Because of individual rationality, we have
vSwin

k
≤ ps ≤ pb ≤ vBmin. Since

M is truthful, we further get ps ≤ vSmin

k
and pb ≥ vBmax and ps and pb should not

depend on any winning trader. Therefore, ifM chooses any k satisfying any of the

following four conditions, there will be proper payments ps ≤ pb only depending

on vBmax and vSmin.

1.
vSmin

k
≤ vBmax,

2.
vSmin

k
> vBmax, v

B
min ≥

vSmin

k
, and vBmax ≥

vSwin

k
,

3.
vSmin

k
> vBmax, v

B
min ≥

vSmin

k
, and vBmax <

vSwin

k
,

4.
vSmin

k
> vBmax, v

B
min <

vSmin

k
, and vBmax ≥

vSwin

k
.

For condition (1), pb, ps ∈ [
vSmin

k
, vBmax] s.t. ps ≤ pb. For condition (2), pb, ps ∈

[vBmax,
vSmin

k
] s.t. ps ≤ pb. For condition (3), pb = ps =

vSmin

k
, and pb = ps = vBmax for

condition (4).

In other words, M chooses any k satisfying any of the above four conditions

can also get payments independent of winning traders and satisfying (weakly)

budget balance. Besides these four conditions, we cannot choose any k under other

conditions where we can still get (weakly) budget-balanced and winning trader

independent payments, given that both k and ps, pb are neither seller-independent

nor buyer-independent.

Therefore, in order to satisfy truthfulness, M has to choose a k such that all

traders’ utilities are maximised. For winning buyers, they would prefer a bigger k

as their payment will be lower compared to the payment with a lower k, i.e. their

utilities are maximised when k is maximised. However, the winning seller might
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prefer a lower value of k as her utility is not necessarily maximised with maximum

k (see the proof of Theorem 5.7 for example). Thus, we may not always be able

to choose a k maximising both buyers’ and sellers’ utilities. This contradicts

the truthfulness of M, i.e. buyers may be incentivised to disable the above four

conditions for lower values of k, while sellers may be motivated to disable that for

higher values of k.

5.5.1 Competitive MDAs

Corollary 5.15. There is no (weakly) budget-balanced, individually rational, truth-

ful multi-unit double auction that is also competitive.

Proof. From Theorem 5.12, we know that there is no (W)BB, IR, truthful, and

competitive multi-unit double auction, if both the trading size and the payment are

neither seller-independent nor buyer-independent. In the following, we will prove

that if the trading size or the payment of an MDA is either seller-independent or

buyer-independent, the MDA will not be competitive.

If the trading size of MDAM is seller-independent, say the expected trading size

is ke, then ke must be also buyer-independent, otherwise we can always find a

example that violates budget balance, individual rationality and truthfulness. For

instance, each seller’s unit valuation for selling any number of units is larger than

the highest valuation of sellers, in which the trading size should be zero if BB, IR

and truthfulness are satisfied. Therefore, given ke > 0 is trader-independent, for

any type profile report v with optimal trading size kopt(v), the competitive ratio

c = kopt(v)
ke

. It is clear that c is not bounded as kopt(v) can be any value approaching

to infinite.

If the payment of MDAM is seller-independent, then for any payment determined

without considering sellers, there exists a case where all sellers’ unit valuation for

selling any number of units are higher than the payment, which means that the
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trading size will be zero ifM is (weakly) budget-balanced, individually rational,

truthful. Therefore, M cannot be competitive under this condition. This result

also holds when the payment is buyer-independent.

5.6 Summary

This chapter studied a multi-unit double auction, where each seller has an un-

limited supply, for exchanging one kind of commodity. Unlike previous studies

of multi-unit double auction, the chapter introduced group buying in the model.

More specifically, sellers’ average unit valuation is decreasing (non-increasing) as

the number of units sold together increases; that is, more buyers buying the com-

modity together as a group from a seller will receive a higher discount.

We found that, under this model, even without considering other criteria, budget-

balanced, individually rational and truthful mechanisms are hard to achieve. We

showed that in Theorem 5.12 there is no budget-balanced, individually rational

and truthful multi-unit double auction, given that both the trading size and the

payment of the auction are neither seller-independent nor buyer-independent (re-

ferred to independence constraint in the following). Under the independence con-

straint, there do exist mechanisms that are budget-balanced, individually rational

but one-sided truthful; that is, truthful for either buyers or sellers (see Sections 5.3

and 5.4). Without considering the independence constraint, in Section 5.5, we did

find auctions that satisfy all the three criteria. Moreover, if we consider trading

size (i.e. the number of units exchanged) at the same time, we demonstrated in

Corollary 5.15 that there is no budget-balanced, individually rational and truthful

mechanism that can also guarantee trading size.

The results in this chapter are based on the assumption that each buyer requires

only one unit. As we mentioned, the results are applicable to the general case

where each buyer i requires ci > 0 units. For the extension, we just need to
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update vBi (1) into
vBi (ci)

ci
in the results, and count the number of units for a buyer

group based on buyers’ cis other than the number of buyers in the group. For

non-deterministic MDAs, e.g. Mfixed and Msingle, the winning probability of a

buyer will be based on his ci, e.g. the winning probability of buyer i in step 3

of Mfixed will be k∗·ci
k1

. As ci is not part of a buyer’s private information, this

extension will not affect any of the properties that hold in the single-unit demand

case.

As closely related work, Huang et al. [2002] proposed weakly budget-balanced,

individually rational and truthful multi-unit double auctions, under the model

where each seller (buyer) supplies (demands) a publicly known number of units,

their valuation for each unit is not changing and their requirements can be par-

tially satisfied. Chu [2009] studied a multi-unit double auction model where there

are multiple commodities, each seller supplies multi-units of one commodity and

each buyer requires a bundle of different commodities. They proposed a method

that intentionally creates additional competition in order to get budget-balanced,

individually rational and truthful mechanisms. Wurman et al. [1998] also consid-

ered one-sided truthful double auctions for optimising social welfare. Goldberg

et al. [2002] studied one-sided auctions where the seller has an unlimited supply

without giving any valuation or reserve price for the commodity, and their gaol

is to design truthful mechanisms that guarantee the seller’s revenue. For group

buying, Edelman et al. [2011] considered the advertising effect of discount offers by

modelling the procedure with two periods, so traders can come back in the future

after getting discounted offers. Arabshahi [2011] provided a very detailed analy-

sis of the Groupon business model and Byers et al. [2011] showed some primary

post-analysis of Groupon. A very earlier study of online group buying is provided

by Anand and Aron [2003].

There are many questions for considering group buying in multi-unit double auc-

tion worth further investigation. Especially, if sellers have limited supply, how do

we calculate their utilities, as they should have valuation for the unsold units and
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the valuation for the unsold units is not the same before and after the auction,

raising the further question of how to optimise social welfare and guarantee other

properties in this case. For instance, a seller supplies two units with unit prices

p1 > p2 for selling one and two units respectively. If we reach a situation where

one unit is left for the seller, we might consider that the seller has a valuation of

p1 for this unsold unit.



Chapter 6

Online Double Auction

Chapter 4 proposed a computational-efficient mechanism for computing the opti-

mal offline solution of a decision-independent dynamic environment in which each

trader is active only one period of time and the trader’s valuation does not change

during that time. This chapter looks at the corresponding online double auction

design problem.

This chapter shows that no deterministic online double auction exists that is truth-

ful and competitive for maximising social welfare in an adversarial model. Further,

it shows that, when the sellers are relatively static and the demand is not more

than the supply, a simple, deterministic and truthful online mechanism is actu-

ally 2-competitive; that is, it guarantees that the social welfare of its allocation

is at least half of the optimal social welfare. Moreover, if the demand can be

predicted exactly, it is demonstrated that an online double auction in this envi-

ronment can be reduced to an online one-sided auction, and the truthfulness and

competitiveness of the reduced online double auction follow those of the online

one-sided auction. Notably, in the second environment, a truthful online double

auction that is almost 1-competitive is achievable, when buyers arrive randomly.

79
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6.1 Introduction

Double auctions have been well studied in simple static settings, where traders

are known before the auctioneer makes any decision [McAfee, 1992, Myerson and

Satterthwaite, 1983, Wurman et al., 1998]. However, in most modern double

auction markets, traders are arriving and departing at different times. We call

these markets online double auctions. The main challenge for the auctioneer in

an online double auction is to make decisions without knowing the traders/orders

that have not yet arrived. The decisions involve an online bipartite matching (i.e.

allocation) between sellers and buyers and a payment calculation.

Following the previous work in online auction design [Blum et al., 2006, Bredin

et al., 2007, Parkes, 2007], this chapter makes an incremental step in this field.

We focus on two important criteria, truthfulness and efficiency, for online double

auction design.

We will show that there is no deterministic and truthful online double auction that

is also competitive for efficiency in an adversarial setting. Then we further study

the environment where sellers are relatively static compared to buyers. Within

this environment, two situations will be examined: 1) where the demand (the

number of buyers) is not more than the supply (the number of sellers), but is

not known exactly, and 2) where the demand is predictable and not necessarily

not more than the supply. We show that, in the first situation, a deterministic

and truthful mechanism is 2-competitive. In the second situation, we propose a

framework to reduce a truthful online double auction to a truthful online one-sided

auction, and demonstrate that the competitiveness of the reduced online double

auction follows that of the online one-sided auction. Especially, in the second

case, a truthful online double auction that is almost 1-competitive, i.e. the social

welfare of the auction’s allocation is nearly optimised, is achievable when buyers

arrive randomly.
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During last decade, there have been substantial researches on mechanism design in

different dynamic environments (see [Parkes, 2007] for a survey). Most of the pre-

vious work has focused on one-sided dynamic markets where either the supply or

the demand is dynamic, e.g. Ad auctions [Mehta et al., 2007]. More importantly,

the auctioneer (in most cases, the seller) in one-sided dynamic markets does not

provide valuations (or reserve prices) to the commodities exchanged and is not con-

sidered to strategically manipulate the auction. However, in online double auction

markets, both the supply and the demand are dynamic and both buyers and sellers

are playing strategically, and the auctioneer has no control over either of them.

To tackle the complexity of online double auction design, we often utilise certain

accessible prior knowledge of the dynamics to get desirable online auctions [Blum

et al., 2006, Bredin et al., 2007].

As closely related work, given the assumption that the valuations of traders are

in a range [pmin, pmax], Blum et al. [2006] proposed a r-competitive truthful online

double auction in an adversarial setting for maximising social welfare, where r is

the fixed point of r = 1
2
ln pmax−pmin

(r−1)pmin
. Besides that, they also considered many other

criteria. Moreover, assuming that traders’ available/active time period in the auc-

tion is no more than some constant K, Bredin et al. [2007] designed a framework

to construct truthful online double auctions from truthful static double auctions,

and demonstrated the performance (for maximising social welfare) of the auctions

given by the framework in probabilistic settings through experiments. Neverthe-

less, the competitive ratio of the auctions in [Blum et al., 2006] is restricted by

the valuation range [pmin, pmax] and therefore can be arbitrarily large, and the

truthfulness of the auctions in [Bredin et al., 2007] relies on the constant K and

the competitiveness is based on experiments.

This chapter is organised as follows. The market model and related concepts are

briefly introduced in Section 6.2. In Section 6.3, we show the impossibility result.

Then a deterministic and truthful mechanism that is 2-competitive is proposed in

Section 6.4 and a framework to reduce a truthful online double auction to a truthful
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online one-sided auction is given in Section 6.5 for two different environments

respectively. Section 6.6 summarizes this chapter.

6.2 Preliminaries and Notations

We consider an online/dynamic double auction market, in which a set B of buyers

and a set S of sellers trade one commodity. Buyers and sellers are traders. We

will refer to a seller as she and a buyer or trader as he. Let T = B ∪ S and

assume that traders are independent and no trader can be both buyer and seller

at the same time, i.e. B ∩S = ∅. Each trader supplies or demands a single unit of

the commodity during a specific time period called the active time of the trader.

Since each trader might have different active times, they might come and leave

the market at different times, which causes the dynamics of the market. Given the

dynamics of the market, the auctioneer (market owner) is challenged by making

decisions without knowledge of traders who have not yet arrived.

Each trader i ∈ T has a privately observed type θi = (vi, ai, di), where vi, ai, di ∈

R
+, vi is i’s valuation of a single unit of the commodity, and ai and di are the start-

ing point and the ending point of i’s active time, i.e. the arrival and departure

time of i.

Due to the revelation principle [Myerson, 2008b], we will focus on mechanisms that

require traders to directly report their types. However, traders do not necessarily

report their true types but no early-arrival and no late-departure misreports are

permitted, i.e. given trader i’s type θi = (vi, ai, di), his report θ′i = (v′i, a
′
i, d

′
i)

satisfies a′i ≤ d′i and [a′i, d
′
i] ⊆ [ai, di]. The intuition behind this constraint is that

traders do not recognise the market before their arrival and they do not get utility

for any trade happened after their true departure time. We say a seller’s report

(called ask) θi = (vi, ai, di) and a buyer’s report (called bid) θj = (vj, aj , dj) are

matchable if and only if vi ≤ vj and [ai, di] ∩ [aj , dj] 6= ∅. In other words, a
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transaction increasing (at least not decreasing) social welfare can occur between

θi and θj .

Let θ = (θi)i∈T denote a complete type profile, and θA = (θi)i∈S and θB = (θi)i∈B

be the complete ask and bid profile respectively. Let θ−i be the type profile of all

traders except for i.

Definition 6.1. An online double auction (ODA) M = (π, x) consists of

an allocation policy π = (πi)i∈T and a payment policy x = (xi)i∈T , where

πi(θ) ∈ [0, 1] indicates the probability that trader i trades successfully during his

reported active time, and xi(θ) ∈ R determines the payment paid to or received

by trader i during his reported active time.

An allocation π is feasible if
∑

i∈B πi(θ) =
∑

i∈S πi(θ) for all B, S and θ. An ODA

M = (π, x) is feasible if π is feasible. Feasibility guarantees that the auctioneer

never takes short or long position in the commodity exchanged in the market.

Only feasible ODAs will be discussed in this chapter.

Given trader i of type θi = (vi, ai, di), report profile θ′ and ODAM = (π, x), let

v(θi) = vi, and the expected utility of i is defined as

u(θi, θ
′, (π, x)) =







(v(θi)− xi(θ
′)) · πi(θ

′), if i ∈ B.

(xi(θ
′)− v(θi)) · πi(θ

′), if i ∈ S.

Definition 6.2. An ODAM = (π, x) is truthful (aka incentive-compatible)

if u(θi, (θi, θ
′
−i), (π, x)) ≥ u(θi, θ

′, (π, x)) for all i, all permitted misreports θ′ of θ,

all type profile θ.

Definition 6.3. An ODAM = (π, x) is efficient ifM maximises the expected

social welfare

W (π(θ)) =
∑

i∈B
v(θi) · πi(θ) +

∑

i∈S
v(θi) · (1− πi(θ)) (6.1)

for all type profile θ.
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In other words, an ODA is efficient if it always allocates items to those traders

who value them most highly. In a market with dynamic participants, it is often

not possible for an online mechanism to guarantee efficient allocations without the

knowledge of the dynamics, because the mechanism’s decision-making is challenged

by the uncertainty of future participants. Therefore, in the end, we measure an

online mechanism’s efficiency by competitive analysis, namely, we compare the

social welfare obtained by an online mechanism with the maximal social welfare one

can achieve offline. Given type profile θ, let Opt(θ) be the optimal allocation

giving the optimal/maximal social welfare. Note that Opt(θ) is also constrained

by feasibility. The following notion of competitiveness will be used to measure the

efficiency of ODAs.

Definition 6.4. An ODA M = (π, x) is c-competitive if for any type profile

θ, the expected social welfare of π(θ), W (π(θ)) ≥ W (Opt(θ))
c

. We refer to c as the

competitive ratio ofM for efficiency. We say thatM is competitive ifM is

c-competitive for some constant c.

6.3 No Deterministic Online Double Auctions

are Competitive

In this section, we will demonstrate that no deterministic ODA is competitive in

an adversarial setting. We prove in the following that for any deterministic and

truthful ODAM = (π, x), there exists a type profile θ such that the social welfare

W (π(θ)) is far from the optimal one W (Opt(θ)).

Theorem 6.5. For any deterministic and truthful ODA M = (π, x) and any

c > 0, there exists a type profile θ such that W (π(θ)) ≤ W (Opt(θ))
c

.

Proof. A deterministic ODA makes decisions at a bid’s/ask’s arrival time, de-

parture time and/or predefined time points. If decisions are not only made at



Chapter 6. Online Double Auction 85

an ask’s departure time, then we can always find a type profile θ′ such that the

last arrived ask θlast of θ
′ is matched by M before θlast departs. Let θ = (θ′, θ∗)

where θ∗ = (v∗, a∗, d∗) is a bid and it arrives after θlast is matched and before

θlast departs. Since M’s decision does not depend on traders not yet arrived, θ∗

will not be matched by π(θ) because there is no unmatched ask available. There

exists a θ∗ such that θ∗ is matched by Opt(θ) (if v(θ∗) is sufficiently large) and

W (π(θ)) ≤ v(θ∗)
c
≤ W (Opt(θ))

c
. Therefore, if v(θ∗)→∞, c will also approach to ∞.

If decisions are only made at an ask’s departure time, there exists a type profile θ

where the last arrived bid θ∗ = (v∗, a∗, d∗) arrives after the second last ask departs

and departs before the last ask departs. We also get W (π(θ)) ≤ v(θ∗)
c
≤ W (Opt(θ))

c

if v(θ∗) is sufficiently large. Note that truthfulness is necessary to guarantee that

all the reports are truthful so that the social welfare is correctly measured.

Given the above negative result, we can still search non-deterministic and compet-

itive mechanisms or examine cases where the dynamics is limited by, say, certain

prior knowledge of the future participants. For instance, we may know the total

number of traders arriving in the future or traders’ valuation satisfying certain

known distribution. With certain prior knowledge of the participants, we are able

to design dedicated ODAs with desirable properties, e.g. [Blum et al., 2006, Bredin

et al., 2007].

In the rest of this chapter, We will examine two situations with some prior infor-

mation. In both cases, we assume that sellers are patient, i.e. they are active

before the first buyer’s arrival until the arrival of the last buyer. In the first case,

we further assume that the demand (i.e. the number of buyers) is no more than

the supply (i.e. the number of sellers), while in the other case we assume that we

can predict the demand. Although we assume that sellers are relatively static in

these online double auctions, they are not the same as online one-sided auctions,

even that considering reserve prices, because not only buyers but also sellers are

playing strategically in double auctions.
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6.4 A Deterministic & Competitive Online Dou-

ble Auction

Although we have the negative result in Theorem 6.5, we propose a deterministic

and truthful online double auction, calledMgreedy, which is 2-competitive, under

the assumption that the demand is not more than the supply in this section.

6.4.1 Specification of Mgreedy

The allocation policy, called Best-first (Bf) Allocation, of the deterministic ODA

Mgreedy greedily matches a newly arrived bid to the best unmatched ask until

there is no unmatched ask left or all bids have arrived.

The Allocation Policy of Mgreedy

Initialization:

• Rank all asks θA in terms of their valuation (the smaller the valuation

the lower the ranking position, breaking ties randomly).

Online Matching:

Upon arrival of bid θBi :

• If the unmatched ask θAj with the lowest ranking position is matchable

with θBi , match θBi with θAj , i.e. both θBi and θAj trade with probability

1.

• Otherwise, θBi is unmatched.
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Figure 6.1a shows an example of the greedy allocation, where dots indicate asks

and bids, the value beside each dot represents the valuation of the ask or bid,

and the order of bids is their arrival order (from top to bottom, breaking ties

randomly). There is a line between an ask and a bid if they are matched by the

allocation policy. Before we describe the payment policy of Mgreedy, let us first

introduce a notion of reachability used in the payment policy.

Let ((θA
∗

1 , θB
∗

1 ), (θA
∗

2 , θB
∗

2 ), ..., (θA
∗

k , θB
∗

k )) be the sequence of ask-bid pairs that are

matched by the Best-first Allocation in bid’s arrival order, e.g. ((2, 7), (3, 4), (5, 6))

in the example shown in Figure 6.1, we say that two matched pairs (θA
∗

i , θB
∗

i ) and

(θA
∗

j , θB
∗

j ) are reachable from each other, if i ≤ j and for all i ≤ m < j, bid

θB
∗

m and ask θA
∗

m+1 are matchable. For the example shown in Figure 6.1, (2, 7) and

(3, 4) are reachable from each other, but (5, 6) is not reachable from (2, 7) and

(3, 4) because ask of valuation 5 and bid of valuation 4 are not matchable.

(a) Best-first (b)
Reachability

Asks Bids

2

3

5

8

9

10

1

3

2

6

4

7

(5)

(5)

(6)

(2)

(3)

(5)

(c) Payments

Figure 6.1: Running Example ofMgreedy

The payment policy is described in the following, which shows a way to calculate

the VCG payment (aka critical value [Parkes, 2007]). Each matched buyer pays

the amount equal to the valuation of the seller to whom he is matched, which is the

infimum of all possible reported valuations for him to be matched in the auction,

while each matched seller receives the supremum of all payments she can ask to

get matched. There is no payment for unmatched traders, i.e. the mechanism is

individually rational.
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The Payment Policy of Mgreedy

For each matched seller i with type θi:

xi(θ) =







min(v(θ̄Amin),max(v(θBlast), v(θ̄
B
max))), if θBlast is reachable from θi

max(v(θAlast), v(θ̄
B
max)), otherwise

where

• θ̄Amin is the unmatched ask that has the lowest ranking position, and

v(θ̄Amin) =∞ if θ̄Amin does not exist,

• θAlast is the last matched ask,

• θ̄Bmax is the unmatched bid that has the biggest valuation, and v(θ̄Bmax) = 0

if θ̄Bmax does not exist,

• θBlast is the last matched bid.

For each matched buyer j with type θj:

xj(θ) = v(m(θj))

where m(θj) is the ask matched to θj .

Example in Figure 6.1c shows the payments beside matched asks and bids accord-

ing to the above payment rule. In this example, v(θ̄Amin) is 8, v(θ
A
last) is 5, v(θ̄

B
max)

is 3 and v(θBlast) is 6. It is easy to see that Mgreedy is running a deficit in this

example. In other words, Mgreedy is not budget-balanced. Budget balance is not

considered in this chapter.
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6.4.2 Properties of Mgreedy

In the following, we prove that deterministic auction Mgreedy is truthful and 2-

competitive.

6.4.2.1 Truthfulness

Theorem 6.6. Mgreedy is truthful for both valuation and time arrival and depar-

ture.

Proof. We will prove the theorem for buyers and sellers respectively.

For buyers: Since the payment for matched buyers are non-decreasing over time

because of the valuation increasing of the lowest unmatched ask, the earlier the

arrival time a buyer has, the higher probability to be matched and the lower

payment the buyer will get. Therefore, all buyers are incentivized to arrive at their

true/earliest arrival time. Since the mechanism does not use buyer’s departure

time for decision-making, there is no motivation for buyers to misreport their

departure time.

Regarding their valuation reporting, for a matched buyer i with bid θi, assume

m(θi) = θj , i.e. θi is matched to θj . i’s payment only depends on v(θj) and v(θj)

is independent of θi, so the payment of i cannot be changed by v(θi). Moreover,

increasing v(θi) does not change the probability for θi to be matched, while de-

creasing v(θi) will reduce the probability for θi to be matched. For an unmatched

buyer i with bid θi, since θi cannot be matched to the currently best unmatched

ask on the arrival of θi or there is no unmatched ask left, i might be able to increase

his valuation to get matched, but then he has to pay more than his valuation, i.e. i

gets negative utility. Thus, reporting valuation truthfully gives buyers the highest

expected utility.
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For sellers: All sellers are incentivized to arrive and depart truthfully as they will

not be considered if they arrive after the first buyer’s arrival or depart before the

last buyer’s arrival.

For a matched seller i with ask θi, we will show that i cannot report a different

valuation other than her true valuation to improve her payment. Let m be the

matching given by Best-first Allocation and θj = m(θi). Assume that θi and θj

is the i-th matched pair in m and |m| = k, i.e. the k-th matched pair of m is

θAlast and θBlast. The following proof is given on the condition whether or not θBlast

is reachable from θi.

(1) θBlast is reachable from θi (e.g. ask 2 in Figure 6.2a):

• If i reported θ′i instead of θi such that v(θ′i) > v(θi) and

v(θ′i) ≤ min(v(θ̄Amin),max(v(θBlast), v(θ̄
B
max))), the ranking position of θ′i is

i′ ≥ i and the allocation will give a new matching m′. For all i ≤ l < i′,

the l-th matched bid of m will be matched to (l + 1)-th matched ask of

m in m′, θ′i will be matched to i′-th matched bid of m in m′, and for all

1 ≤ l < i and i′ < l ≤ k, the l-th matched pair of m is also a matched

pair in m′ (see Figure 6.2b and 6.2c for example). In both m and m′, the

payment for i is the same because θBlast is still reachable from θ′i, and θ̄Amin,

θBlast and θ̄Bmax are not changed. Moreover, the probability for trader i to be

matched will be the same with both θi and θ′i, which is 1 here. However,

if v(θ′i) > min(v(θ̄Amin),max(v(θBlast), v(θ̄
B
max))), then θ′i will not be matched

in m′ (see Figure 6.2d for example). Therefore, i cannot report a higher

valuation to receive more payment.

• If i reported θ′i instead of θi such that v(θ′i) < v(θi), we know that θ′i will be

matched. There will be two situations: 1) θBlast is still reachable from θ′i, 2)

θBlast is not reachable from θ′i. In the first situation, θ̄Amin, θ
B
last and θ̄Bmax of m

and m′ are the same, so the payment will be the same for θ′i and θi. In the

second situation, we will have two sub-cases: a) θ̄Amin of m is θAlast of m
′ and
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θ̄Bmax, θ
B
last are the same for both m and m′ (see the manipulation example in

Figure 6.3c and 6.3a in another way around, i.e. ask of 4.5 is misreported as

ask of 2), b) θBlast of m is θ̄Bmax of m′ and θ̄Amin is the same for both m and m′

(see the manipulation example in Figure 6.3e and 6.3d (or Figure 6.3f and

6.3d) in another way around). Following the proof for the condition “θBlast is

not reachable from θi” in the following, we conclude that i cannot improve

her utility by misreporting a lower valuation.

(2) θBlast is not reachable from θi (e.g. ask 2 in Figure 6.3a/6.3d):

• If i reported θ′i instead of θi such that v(θ′i) > v(θi) and v(θ′i) ≤ max(v(θAlast), v(θ̄
B
max)),

we will get a new matching m′. If θBlast is still not reachable from θ′i in m′,

then the payment for θ′i is the same as for θi (see Figure 6.3b for example).

If θBlast of m is reachable from θ′i in m′ and it is also the last matched bid

of m′ (i.e. v(θAlast) > v(θ̄Bmax)), then θAlast of m is θ̄Amin of m′ and therefore

the payment for θ′i will be the same as for θi (e.g. Figure 6.3a and 6.3c). If

v(θAlast) ≤ v(θ̄Bmax) and θBlast of m
′ is reachable from θ′i in m′, then θBlast of m

′

will be θ̄Bmax of m and θAlast of m
′ is either θAlast of m or θ′i (see Figure 6.3d,

6.3e and 6.3f for example). It is evident that the payment in this case is also

not improved. However, if v(θ′i) > max(v(θAlast), v(θ̄
B
max)), then θ′i will not

be matched in m′. Therefore, i cannot improve her payment by reporting a

higher valuation.

• If i reported θ′i instead of θi such that v(θ′i) < v(θi), the ranking position of

θ′i might be lower than that of θi, but it will not change the probability for i

to be matched, θAlast and θ̄Bmax are still the same, and θBlast is still not reachable

from θ′i. Thus, the payment will be the same for i with both reports θi and

θ′i.

For an unmatched seller i with ask θi, we know that v(θAlast) ≤ v(θi) > v(θ̄Bmax). If

i reported θ′i such that v(θ′i) < v(θi) and θ′i is matched in the new matching m′,
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then there will be three cases: (a) θAlast and θBlast of m are also those of m′, (b) θAlast

of m is θ̄Amin of m′ and θBlast of m is θBlast of m′, (c) θ̄Bmax of m is θBlast of m
′ and

either θ′i or θ
A
last of m is θAlast of m

′. For any of these three cases, the payment for

i with report θ′i will be less than or equal to v(θi), i.e. i gets non-positive utility

by misreporting.
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Figure 6.2: Seller Manipulation Examples I

(a) m1 (b) m′

1
(c) m′′

1

(d) m2 (e) m′

2 (f) m′′

2

Figure 6.3: Seller Manipulation Examples II
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6.4.2.2 Efficiency

In this section, we will apply competitive analysis, a method invented for analysing

online algorithms, to check the efficiency of Mgreedy. In other words, we will

determine a competitive ratio c, defined in Definition 6.4, forMgreedy.

To that end, given a report profile θ, we need to first know what is the optimal

allocation, i.e. an allocation maximising social welfare, if we are aware of all

inputs/reports in advance. In this case, the optimal allocation is achieved by

matching the highest bid (with respect to valuation) with the lowest ask, the

second highest bid with the second lowest ask and so on, until there is no more

matchable pair left. Figure 6.4 shows an example for both Best-first Allocation

and optimal allocation.

(a) Best-first (b) Optimal

Figure 6.4: Best-first Allocation vs Optimal Allocation

Given the optimal allocation, we are ready to calculate the competitive ratio of

Best-first Allocation. We first show that all asks that are matched by the optimal

allocation are also matched by Best-first Allocation.

Lemma 6.7. All asks that are matched by the optimal allocation are also matched

by Best-first Allocation.

Proof. We know that in the optimal allocation, any matched ask can be matched

to any matched bid. Since all the matched asks of the optimal allocation will

be matched first by Best-first Allocation, each of the matched asks of the optimal
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allocation will be matched to either one of the matched bids or another unmatched

bid of the optimal allocation by Best-first Allocation.

AOpt

ĀOpt

BOpt

B̄Opt
BBf

Figure 6.5: A Special Case of Best-first Allocation

Theorem 6.8. Mgreedy is 2-competitive.

Proof. We first show that this competitive ratio is achievable under a special case

and then we prove that in any other cases the ratio is also achievable.

The special case is that all matched asks of the optimal allocation are matched to

unmatched bids of the optimal allocation by Best-first Allocation, and unmatched

asks of the optimal allocation are also not matched by Best-first Allocation (see

Figure 6.5 for example, where the grey areas are the asks and bids matched by

Best-first Allocation and double arrow lines indicate the matching relation). Let

AOpt and ĀOpt be the matched and unmatched asks respectively in the optimal

allocation, and BOpt and BBf be the matched bids in the optimal allocation and

Best-first Allocation respectively and B̄Opt and B̄Bf be the corresponding un-

matched bids. We can get that BOpt ∩ BBf = ∅, i.e. no bid from BOpt can be

matched to any ask from ĀOpt. We also know that ĀOpt 6= ∅ and |ĀOpt| ≥ |BOpt|
because we assumed that the demand is not more than the supply. Therefore,

∑

θi∈ĀOpt

v(θi) >
∑

θi∈BOpt

v(θi). (6.2)
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The social welfare of the optimal allocation is:

W (Opt(θ)) =
∑

θi∈ĀOpt

v(θi) +
∑

θi∈BOpt

v(θi). (6.3)

The social welfare of Best-first Allocation is:

W (Bf(θ)) =
∑

θi∈ĀOpt

v(θi) +
∑

θi∈BBf

v(θi). (6.4)

Combining (6.2), (6.3) and (6.4), we get

W (Bf(θ))

W (Opt(θ))
>

∑

θi∈ĀOpt
v(θi) +

∑

θi∈BBf
v(θi)

∑

θi∈ĀOpt
v(θi) +

∑

θi∈ĀOpt
v(θi)

>
1

2
.

So far, we have proved the theorem in a special case. In the general case, some

asks of AOpt might be matched to some bids of BOpt, and some asks of ĀOpt might

be matched to some bids of BOpt by Best-first Allocation. Due to Lemma 6.7, we

know that all asks in AOpt are matched by Best-first Allocation. Let BA and B̄A

be all the bids from BOpt and B̄Opt respectively that are matched to asks of AOpt

by Best-first Allocation. Let ĀB be the asks from ĀOpt that are matched to some

bids of BOpt by Best-first Allocation, and BĀ be the corresponding bids matched

to ĀOpt. Let B′ = BOpt \ (BA ∪ BĀ) be the asks from BOpt that are not matched

by Best-first Allocation (see Figure 6.6). Therefore, the social welfare of Best-first

Allocation is:

W (Bf(θ)) =
∑

θi∈ĀOpt\ĀB

v(θi) +
∑

θi∈BA∪B̄A∪BĀ

v(θi).
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So, we get

W (Bf(θ))

W (Opt(θ))
=

∑

θi∈ĀOpt\ĀB
v(θi) +

∑

θi∈BA∪B̄A∪BĀ
v(θi)

∑

θi∈ĀOpt
v(θi) +

∑

θi∈BOpt
v(θi)

=

∑

θi∈ĀOpt∪BOpt
v(θi)−Σ

∑

θi∈ĀOpt∪BOpt
v(θi)

= 1− Σ
∑

θi∈ĀOpt∪BOpt
v(θi)

, (6.5)

where Σ =
∑

θi∈B′∪ĀB
v(θi)−

∑

θi∈B̄A
v(θi).

Since the number of bids is not more than that of asks, i.e. the number of un-

matched bids is not more than that of unmatched asks, we get |ĀOpt \ ĀB| > |B′|.

We know that no ask from ĀOpt \ ĀB can be matched to any bid from B′, so
∑

θi∈ĀOpt\ĀB
v(θi) ≥

∑

θi∈B′ v(θi), i.e.
∑

θi∈ĀOpt
v(θi) ≥

∑

θi∈B′∪ĀB
v(θi). Thus,

Σ
∑

θi∈ĀOpt∪BOpt
v(θi)

≤ Σ
∑

θi∈B′∪ĀB
v(θi) +

∑

θi∈BOpt
v(θi)

. (6.6)

Since

∑

θi∈BOpt

v(θi) =
∑

θi∈BĀ∪BA∪B′

v(θi) ≥
∑

θi∈ĀB∪BA∪B′

v(θi) ≥
∑

θi∈ĀB∪B′

v(θi),

we conclude that

Σ
∑

θi∈B′∪ĀB
v(θi) +

∑

θi∈BOpt
v(θi)

≤

Σ
∑

θi∈B′∪ĀB
v(θi) +

∑

θi∈ĀB∪B′ v(θi)
≤

Σ +
∑

θi∈B̄A
v(θi)

∑

θi∈B′∪ĀB
v(θi) +

∑

θi∈ĀB∪B′ v(θi)
=

1

2
. (6.7)

Combining (6.5), (6.6) and (6.7), we get W (Bf(θ))
W (Opt(θ))

≥ 1
2
.
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AOpt

ĀOpt

BOpt

B̄Opt

BA

BĀ

B′

B̄AĀB

Figure 6.6: A General Case of Best-first Allocation

6.5 Reducing Online Double Auctions to Online

One-sided Auctions

In Section 6.3, we have shown that there is no deterministic mechanism that

can guarantee efficiency if we do not have any information of the incoming bids.

However, if we know that the demand is not more than the supply, we can use

this prior knowledge to get a deterministic online mechanism that is also truthful

and 2-competitive in the last section. In this section, we will study another case

where we can predict how many bids will arrive. Given this prior information, we

will demonstrate how to reduce an ODA to an online one-sided auction that aims

to select the k-best bids from n bids arriving in an online fashion, e.g. secretary-

problem-based online auctions [Buchbinder et al., 2010, Hajiaghayi et al., 2004,

Kleinberg, 2005].

The main difference between ODAs and online one-sided auctions is that, instead

of selling k items to n bidders in online one-sided auctions, we do not know how

many items we should allocate to buyers in ODAs, because items are provided by

sellers who have valuations on the items. In other words, it is not necessary to

sell an item from a seller with high valuation to a buyer with low valuation, if

maximising social welfare is part of the goal of the auction. We refer to seller’s

valuation as reserve price. Therefore, one way to reduce ODAs to online one-sided
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auctions is integrating reserve prices in online one-sided auctions. For instance,

in the situation where there is only one seller, we want to select a buyer that has

a valuation at least better than the seller’s. Although the buyer we selected has

the highest valuation among all buyers, the buyer’s valuation might be still very

small compared with the valuation of the seller. What if we consider the seller

in the above example as an additional buyer and let the one-sided auctions select

the best among both the seller and buyers? In the rest of this section, we will

show how to consider sellers as additional buyers in ODAs, and how to achieve

the truthfulness and competitiveness of ODAs by using truthful and competitive

online one-sided auctions.

6.5.1 The Reduction

Let nA and nB be the number of asks θA and bids θB respectively. Let A be an

online one-sided auction. We construct an ODA MA from A as follows. The

intuition is considering sellers as additional buyers by giving asks opportunity to

compete with bids in order to gain items back for sellers, if sellers’ valuations are

comparatively high among the valuations of both sellers and buyers. By doing

this, a seller with a comparatively high valuation will have a better chance to get

her item back if maximising social welfare is an objective of A. In order to treat

relatively static sellers as buyers, we need to assign them an new online arrival

order in terms of the arrival of buyers in the reduction.

Online Double Auction MA based on Online One-sided Auction A

1. Choose a position li ∈ [1, nA + nB] for each ask θi according to a dis-

crete probability distribution function f(x) that satisfies the assumptions

made on the arrival order of the inputs of A.
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2. Run A on the inputs that contain both asks θA and bids θB where each

ask θi arrives right after the (li − 1)-th bid or ask arrived.

3. If a bid θi is selected by A with payment pi and v(θi) ≥ v(θj), where

θj is the currently unmatched ask with lowest valuation (breaking ties

randomly), then θi is matched to θj with payment

xi(θ) = max(pi, v(θj)) (6.8)

and therefore θj is also matched (initially all asks are unmatched). Oth-

erwise, θi is unmatched.

4. Once the matching/allocation is done, the payment for each matched ask

θj is defined as

xj(θ) = min(v(θBlast), v(θ̄
A
min)), (6.9)

where θBlast is the last bid in arrival order selected by A, and θ̄Amin is

the unmatched ask with lowest valuation and v(θ̄Amin) = 0 if there is no

unmatched ask.

For the probability distribution function f(x) of MA, we only require that f(x)

satisfies the assumptions made on the arrival order of the inputs of A. In other

words, the arrival order assigned to asks satisfies the assumptions made on the

arrival order of bids. For instance, if A is based on a random-ordering model, e.g.

secretary-problem-based online auctions [Kleinberg, 2005], then f(x) can only be a

random distribution function. If A is based on an adversary-ordering model, then

f(x) can be any distribution function. More interestingly, if A has no assumption

made on the arrival order of its inputs, we can utilise f(x) for other purpose. In

single-seller case, for example, we might push the ask to the front of the inputs

to guarantee a higher expected valuation of the selected trader and therefore to

further improve the efficiency ofMA.
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Figure 6.7 shows a running example of MA. MA first chooses a position for

each ask, then runs A on the merged input and selects the winners (indicated by

‘*’), and finally determines the final asks and bids that are matched by using the

winners selected by A (traders allocated an item byMA are indicated by circles).

From the example in Figure 6.7, we can say that both the ask of value 2 and the

bid of value 6 do not get item in the end, although they are selected by A. That
is,MA might improve the social welfare of the allocation given by A.

Figure 6.7: A Running Example ofMA

6.5.2 Key Properties of MA

In the rest of this section, we show two key properties of MA which are not

dependent on the definition of f(x), and then show two instances ofMA.

Theorem 6.9. If A is truthful for both valuation and time arrival and departure,

thenMA is truthful for both valuation and time arrival and departure.

Proof. We prove for sellers and buyers respectively. We need to show that both

sellers and buyers will reveal their true valuation and arrive and departure truth-

fully, i.e. traders are incentivized to arrive as early as they can and depart as late

as possible.

For a buyer i of type θi that is not selected by A, θi will also not be matched by

MA. If i misreported θ′i and is selected by A, then v(θi)− pi ≤ 0, i.e. i might get

negative utility in A, because A is truthful. Therefore, if θ′i is matched by MA,

then i’s utility v(θi)−max(pi, v(θj)) ≤ v(θi)− pi ≤ 0.
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For a buyer i of type θi that is selected byA, θi will be either matched or unmatched

byMA depending on v(θi) and the lowest unmatched ask θj when θi is selected. If

v(θi) ≥ v(θj), θi is matched byMA. Otherwise, θi is unmatched. If θi is matched

byMA, then we know that i’s utility v(θi)−max(pi, v(θj)) is maximised, because

v(θi) − pi is maximised by A and v(θj) is independent of i and it is minimised if

i arrives at his earliest arrival time. If θi is not matched by MA, then we have

pi ≤ v(θi) < v(θj). Since v(θj) is independent of i and it is minimised if i arrives

at his earliest arrival time, i can only be matched byMA if i misreported θ′i such

that v(θ′i) ≥ v(θj), but then v(θi)−max(pi, v(θj)) < 0.

For buyers, we conclude from the above that they are incentivized to arrive at

their earliest arrival time and report their true valuation. Moreover,MA does not

use their departure time for decision-making, so the truthfulness of their departure

directly follows that of A.

For sellers, since we assume that all sellers are patient, i.e. sellers arriving after

the arrival of the first bid or departing before the last bid’s arrival will not be

considered by MA, all sellers are incentivized to arrive and depart truthfully.

In the following, we will prove that sellers are also incentivized to reveal their

true valuation inMA, i.e. telling their true valuations maximises their expected

utilities.

For a matched seller i with ask θi, her payment xi(θ), defined by (6.9), is not

dependent on θi. If i asks more than xi(θ), she will not be matched, and if i asks

any value in between v(θi) and xi(θ), she will increase her chance to be selected by

A because A’s goal is to choose inputs with higher valuation, which might reduce

the probability for i be matched by MA as less bids will be selected by A. But

if i reports a valuation less than v(θi), he might get less payment/utility, because

bids with lower valuations might be selected as asks will become less competitive

if sellers misreport a lower valuation.
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For an unmatched seller i of type θi, the payment for all matched asks, say pA,

is at most v(θi) because min(v(θBlast), v(θ̄
A
min)) ≤ v(θ̄Amin) ≤ v(θi). In order to get

matched, i needs to bid θ′i such that v(θ′i) ≤ pA, but then the payment for i will

not be more than pA, i.e. i might get negative utility. Thus, all sellers will reveal

their true valuations on their arrival.

Theorem 6.10. If A is c-competitive, thenMA is c-competitive.

Proof. Given report profile θ, let AA and BA be the sets of selected asks and bids

in A respectively. Since A is c-competitive for maximising social welfare, we get

W (A(θ)) =
∑

θi∈AA∪BA

v(θi) ≥
W (Opt(θ))

c
.

Based on the winners AA∪BA selected by A,MA will further improve the sellers

and buyers that are going to have items. More specifically, a selected ask by

A might be matched by MA and the item of the seller will be allocated to a

seller with comparatively higher valuation (e.g. the ask of value 2 in Figure 6.7),

while a selected bid by A might not be matched byMA if the bid’s valuation is

comparatively lower (e.g. the bid of value 6 in Figure 6.7). The reason is that AA

is only used to determine at least how many sellers are going to keep their items

and the |AA|-best sellers in terms of their valuations will keep their items for sure,

and that some bids of BA might not be matched byMA if their valuations are not

good enough. As such, the social welfare of the allocation given byMA is at least

that of the allocation given byA. That is, W (MA(θ)) ≥W (A(θ)) ≥ W (Opt(θ))
c

.

Corollary 6.11. Let k be the number of sellers, there exists a truthful ODAMA

that is

• 2
√
e-competitive for k = 1.

• (1 + C√
k
)-competitive.
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Corollary 6.11 follows the 2
√
e-competitive online single-item auction proposed

by Buchbinder et al. [2010] via linear programming and the (1 + C√
k
)-competitive

online multi-item auction introduced by Kleinberg [2005], which approaches to 1-

competitive as k →∞. Both these two one-sided auctions are based on secretary

problems, i.e. f(x) ofMA will be an uniform random distribution function.

6.6 Summary

We have studied the mechanism design problem of online double auction markets

where traders are participating dynamically in the markets. Due to the complexity

of the dynamics caused by traders in online double auction markets, we proved

that there is no deterministic and truthful online mechanism that is competitive

for maximising social welfare in an adversarial model. However, this negative re-

sult does not scale to the situations where we can access certain prior information

of the participants. In this chapter, we studied two environments where sellers

are relatively static and some prior information of buyers is accessible. In the first

environment, we assumed that the demand (i.e. the number of buyers) is not more

than the supply (i.e. the number of sellers). Under this assumption, we proposed a

deterministic, 2-competitive and truthful online mechanism in Section 6.4. In the

second environment, given the prior information that the number of incoming buy-

ers is predictable, we demonstrated in Section 6.5 how to reduce a truthful online

double auction to a truthful online one-sided auction, and showed that the compet-

itiveness of the reduced online double auction follows that of the online one-sided

auction. By using the reduction framework proposed for the second environment,

we achieved an online double auction that is almost 1-competitive. However, the

mechanisms proposed in this chapter are not (weakly) budget-balanced, which is

also an important factor besides truthfulness and efficiency and worth further in-

vestigation, though it is often very hard to achieve all three criteria together even

in static cases [Gonen et al., 2007, Myerson and Satterthwaite, 1983].
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Different prior knowledge gives us different advantages for designing online mecha-

nisms, as it reduces the dynamics in some sense. In very complex dynamic environ-

ments, without certain prior knowledge, in general it is impossible to obtain ideal

mechanisms in an adversarial model. Therefore, one objective of mechanism design

in such complex environments is to search desirable online mechanisms by utilising

as less prior knowledge as possible. Except the situations studied in this work and

other previous works, there are many other interesting cases existing in real appli-

cations worth further investigation, e.g. dynamic kidney exchange [Ünver, 2010].

Moreover, besides prior knowledge, randomisation has also played an important

role in online algorithm design [Ben-David et al., 1990, Chrobak, 2008, Karp et al.,

1990].



Chapter 7

Behaviour-based Adaptive

Double Auction

I have demonstrated the online double design problem in a decision-independent

dynamic environment, where traders are dynamically arriving and departing, each

trader is only active in the auction for one period of time and their valuation does

not change during their active time. This chapter looks at a decision-dependent

dynamic environment in which the trader type is decision-dependent. Each trader

in this kind of environment will be active in the market for multiple discrete

periods of time and the trader’s valuation is changing over time in response to the

decisions of the auction. In other words, the dynamics of this kind of environment

can be affected by the auction, which is different from the online model studied in

the previous chapter.

Since the dynamics are decision-dependent, this chapter proposes an approach

based on traders’ behaviour model (or type model) to design online double auc-

tions that are adaptive to market changes or somehow guide traders to behave

in a certain way. Once the mechanism is able to guide traders’ behaviour, the

mechanism will be able to predict or control the dynamics so that more efficient

allocations will be achievable. Due to most of the strategies adopted by traders in

105
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the corresponding real applications being well-classified and studied in economics,

the approach in this chapter analyses and utilises the behaviour model of each

kind of trader, designs specific (trader-dependent) mechanisms for attracting/con-

trolling them, and finally integrates these trader-dependent mechanisms to achieve

adaptive mechanisms for any mixed environments with these traders. The evalu-

ation will be carried out through the market simulation platform for the Trading

Agent Competition Market Design Tournament (CAT Tournament). Because of

the strong assumptions required for truthfulness, namely independent valuation

and rationality, this chapter is not able to consider truthfulness. It focuses on the

factors used to measure the success of a real double auction market, such as a

stock exchange.

7.1 Introduction

An online double auction market allows multiple buyers and sellers to trade com-

modities at different times as they wish. The annual Trading Agent Competition

(TAC) Market Design Tournament was established in 2007 to foster research in

the design of double auction market mechanisms in a dynamic and competitive

environment, particularly mechanisms able to adapt to changes in the environ-

ment [Cai et al., 2009, Parkes, 2007]. A CAT tournament consists of a series of

games, and each game is a simulation of double auction markets including traders

(buyers and sellers) and specialists (market makers). Traders are simulated and

provided by the tournament organiser, while each specialist is a double auction

market set up and simulated by a competitor. Traders dynamically swap between

specialists to trade, while specialists compete with each other by attracting traders,

executing more transactions and gaining more profit. Therefore, the CAT tourna-

ment environment simulates not only the dynamics of traders but also competition

among specialists, which renders the market design particularly challenging.
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Although certain winning market mechanisms under the TAC competition plat-

form have been published [Honari et al., 2009, Niu et al., 2010, Stavrogiannis

and Mitkas, 2009, Vytelingum et al., 2008], they cannot guarantee that a win-

ning mechanism is also competitive when the environment is changed. This is also

demonstrated by Robinson et al. through a post-tournament evaluation [Robinson

et al., 2009]. They showed that most specialists are susceptible to environmen-

tal changes. This phenomenon raises the question of how to design a competitive

double auction market that is adaptive to environmental changes.

Central to becoming a winning specialist in the CAT tournament is attracting

as many good traders as possible in order to receive more good shouts, generate

more efficient allocations and therefore create more profit for both traders and the

market maker. This is also true for a real exchange market, as traders normally

choose a market based on market liquidity (indicating the performance of the

market) and the number of traders in the market (indicating whether traders can

benefit from trading in the market). Moreover, in general there does not exist a

universal mechanism that is attractive to all kinds of traders, which also explains

why different exchange markets use different policies to target different traders

in the real world. Therefore, it is very important for a market maker to fully

understand the market environment and target good customers. A key approach

to understanding the market environment is the analysis of market history so that

traders’ behaviour models can be recognised.

Therefore, in this chapter we propose an approach based on traders’ behaviours to

design competitive mechanisms that are also adaptive to environmental changes.

By classifying and utilising traders’ behaviour, we first design mechanisms that

are competitive in environments with one kind of trader, and then integrate these

trader-dependent mechanisms to obtain competitive mechanisms for any complex

environment that is not known in advance. That is, the proposed mechanism is

guided by the behaviour of the traders and also influences their behaviour, in order

to achieve certain desired properties, say efficiency (or maximising social welfare).
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This chapter is organised as follows. After a brief introduction to the CAT tour-

nament platform in Section 7.2, we show how to classify traders based on their

behaviour in Section 7.3. Section 7.4 presents a way to utilise traders’ behaviour

in the design process and shows an experimental example. Section 7.5 demon-

strates a general extension of this approach, and Section 7.6 summarises with

some suggested directions for future work.

7.2 Preliminary

This section will introduce the CAT tournament platform, called JCAT [Niu et al.,

2008]. JCAT provides the ability to run CAT games. A CAT game consists of

a CAT server and CAT clients including traders (buyers and sellers) and special-

ists (market makers). The CAT server works as a communication hub between

CAT clients and records all game events and validates requests from traders and

specialists. A CAT game lasts a certain number of days, say 500, and each day

consists of rounds. Each trading agent is equipped with a specific bidding strategy

and can only choose one specialist to trade in each day, while each specialist is a

combination of policies. Traders are configured by the competition organiser, and

each specialist is set by a competitor.

Each trader is configured with a private value (i.e. its valuation of the goods

it will trade), a market selection strategy and a bidding strategy. The market

selection strategy determines a specialist to trade in each day, and the bidding

strategy specifies how to make offers. The main market selection strategies used in

previous competitions are based on an n-armed bandit problem where daily profits

are used as rewards to update the value function. Bidding strategies integrated in

JCAT are those that have been extensively studied in the literature, namely ZIC

(Zero Intelligence-Constrained [Gode and Sunder, 1993]), ZIP (Zero Intelligence

Plus [Cliff and Bruten, 1997]), GD (Gjerstad Dickhaut [Gjerstad and Dickhaut,

2001]), and RE (Roth and Erev [Erev and Roth, 1998]). ZIC traders bid randomly
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within constraints. ZIP traders, modified version of ZIC traders, adapt to market

changes to remain competitive in the market. GD traders use market history of

submissions and transactions to form their beliefs over the likelihood of a bid or

ask being accepted, and use this belief to guide their bidding. Finally, RE traders

are designed to mimic human game-playing behaviour in extensive form games,

and their strategy relies on the profit that they were able to obtain in the most

recent round of trading.

Each specialist (market owner) operates one exchange market and designs its own

market rules in terms of five components/policies, namely accepting policy, clear-

ing policy, matching policy, pricing policy and charging policy. An accepting policy

determines what shouts/orders are acceptable. A clearing policy schedules clear-

ing time during a trading day. A matching policy specifies which ask is matched

with which bid for clearing. A pricing policy calculates a transaction price for

each match given by matching policy. A charging policy is relatively independent

from other policies and determines the charges a specialist imposes on a trading

day, e.g. fees for each transaction.

7.3 Behaviour-based Trader Classification

Given an unknown environment, the key for understanding the environment is

analysing traders’ behaviour. Especially when the strategies adopted by traders

can be clearly classified, we want to find out traders’ behaviour patterns for differ-

ent strategies, i.e. the relationship between traders’ strategies and their behaviour.

Therefore, we can distinguish traders in terms of their behaviour and apply differ-

ent policies for different traders. In this section, based on JCAT, we introduce how

to collect traders’ behaviour-related information, define the categories of traders

and finally show how to classify traders based on their behaviour.
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7.3.1 Data Acquisition

In JCAT, for each trader i and each specialist s, all specialists can obtain the

following trader-related historical information.

• Accepted shouts of i by s.

• Cleared/Matched shouts of i by s.

The above information is also the only information about each trader available for

all specialists. The trader of a rejected shout is never revealed to any specialist,

even the specialist whom the shout was submitted to. Therefore, the acceptance

of a shout cannot depend on the sender’s historical information. Given the above

information about each trader, we need to pre-process it depending on what we

need for the design process, e.g. the average clearing price for a trader in a

specialist during a period of time and a trader’s trading time distribution.

7.3.2 Defining Categories of Trader

Given the perfect equilibrium price p∗e of a market1, we classify traders into two

different categories, intra-marginal and extra-marginal:

• Intra-marginal : A seller (buyer) i with private valuation vi is intra-marginal

if vi ≤ p∗e (vi ≥ p∗e).

• Extra-marginal : Otherwise.

The reason for classifying traders into these two categories is that intra-marginal

traders can bring profitable shouts to a market, while extra-marginal traders do

not. Therefore, a competitive specialist needs to attract more intra-marginal

traders. We can further classify intra-marginal traders in terms of their bidding

strategies.

1The equilibrium of a market where traders truthfully report their demand and valuations.
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7.3.3 Category Recognition from Trader’s Behaviour

We say a trader is attracted by a specialist if the trading time the trader spent

in the market of that specialist is much greater than the time it spent in any

other market. We know that a profit-seeking trader chooses a specialist that has

given it the highest profit in some past period. In order to give a trader profit,

a specialist has to match its shouts as many as possible with profitable clearing

prices. Therefore, intra-marginal traders are more likely to be attracted. Thus, a

trader’s trading time distribution (i.e. stability) will be the main information to

be considered in its category recognition.

7.3.3.1 Trading Time Distribution

As the main market selection strategy adopted in CAT competitions, ǫ-greedy

selection determines what is the most profitable specialist for a trader and then

selects this specialist with probability of 1 − ǫ and the others randomly with

probability ǫ. This selection strategy uses reinforcement learning method based

on the profit a trader received from each specialist. ǫ is mostly set to be 0.1 in

CAT competitions.

Based on the above market selection strategy, we recognise the following trading

time distribution patterns. We say a trader i is more stable if the time (w.r.t. the

number of days) that i spent in each market varies significantly, i.e. the standard

deviation of the trading time is higher. Generally speaking, intra-marginal traders

are much more stable than extra-marginal traders under the same bidding strategy,

but the degree of stability varies with bidding strategies.

• Under the same bidding strategy. All intra-marginal traders have similar

trading time distribution, in other words, intra-marginal traders with valua-

tions far from the perfect market equilibrium are not more stable than those

with valuations close to the perfect market equilibrium. Extra-marginal
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traders with valuations close to the perfect equilibrium are less stable than

intra-marginal traders, but they still have preferences between markets.

When valuations of extra-marginal traders are far from the perfect mar-

ket equilibrium, they have no strict preference for any market, i.e. the times

spent in each specialist are very close to each other.

• Degree of stability with different strategies. Given similar valuations, GD,

ZIP and ZIC traders are more stable than RE traders. One reason is that an

RE trader uses the profit that it was able to obtain in the most recent trading

in a market to adjust (increase) its bidding price, so it will keep increasing

its bidding price in a market until finally its shouts cannot be successfully

matched, which will cause the trader to move to another market.

7.3.3.2 Stability vs Intra-marginality

As we have mentioned in the above, most intra-marginal traders are very stable.

However, some extra-marginal traders with valuations close to the perfect equi-

librium can also be very stable if there are some specialists that have very high

probability to match their shouts while others cannot do so. Therefore, a stable

trader doesn’t need to be intra-marginal. To find out whether or not a stable

trader is intra-marginal, we need further information about their behaviour, e.g.

bidding prices. If a stable seller’s (buyer’s) average bidding price is above (under)

the equilibrium price, then it maybe not intra-marginal. In general, the selected

information should be able to efficiently classify traders into the categories you

defined.
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7.4 Behaviour-based Policy Design

A mechanism/market of a specialist is a combination of different policies and the

relationship between these policies are not completely clear, so searching a com-

petitive combination without restriction under this setting will be computation-

ally intractable. In general, we limit the search space for each policy to certain

well-known alternatives that are normally trader-independent. Moreover, there

exist many policy combinations that are competitive under the same market en-

vironment, which can be seen from the results in [Niu et al., 2010]. However, in

our approach, since we have gained an understanding of traders’ behaviour, we

are able to further limit the search space by utilising traders’ behaviour. More

importantly, we want to further utilise traders’ behaviour information to design

trader-dependent mechanisms that attract one kind of trader, and integrate those

trader-dependent mechanisms to achieve adaptive mechanisms that are attractive

to all kinds of traders. In the rest of this section we will define the policies of a

specialist by using traders’ behaviours and propose a two-step method to search

adaptive mechanisms.

7.4.1 A Search Space of Behaviour-based Policies

Combined with traders’ behaviours, the following policies are adapted from the

literature.

7.4.1.1 Accepting Policy

Once a specialist receives a new shout, it has to first decide whether or not to accept

it. If too many extra-marginal shouts are accepted, they will not be matched and

therefore the transaction rate will be very low. So why does not a specialist only

accept shouts from traders that it wants to attract? Unfortunately, a specialist

does not know who is the sender of a shout before the shout is accepted in CAT
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competitions. Instead some other general market information can be used here,

e.g. the equilibrium price of historical shouts received in a market. We will use the

equilibrium price of historical shouts to set up a maximum (minimum) acceptable

ask (bid) price for each day, as historical equilibrium can approximately distinguish

between intra-marginal and extra-marginal shouts.

Given the current day t, the most recent M historical shouts HM
t , the maximum

acceptable ask price Aa
t and the minimum acceptable bid price Ab

t are defined as:

Aa
t = E(HM

t ) + θa ∗ F a
t

Ab
t = E(HM

t )− θb ∗ F b
t

where E(HM
t ) is the equilibrium price of Ht, F a

t , F
b
t ≥ 0 are relaxations, and

θa, θb ∈ [0, 1] are the relaxation rates. F a
t and F b

t are calculated for each day, and

θa, θb are dynamically updated during a day, say, updated after each round.

7.4.1.2 Matching Policy

The two commonly used matching policies are equilibrium matching and maximal

matching (see Chapter 3). Equilibrium matching is used to find the equilibrium

price pe which balances the bids and the asks going to be matched so that all the

bids with price p ≥ pe and all the asks with price p ≤ pe are matched [Friedman

and Rust, 1993]. The aim of maximal matching is to maximise the number of

transactions/matches by matching high intra-marginal shouts with lower extra-

marginal shouts if necessary. The main difference between these two matchings

is that maximal matching moves some profit from high intra-marginal traders to

lower extra-marginal traders so that lower extra-marginal traders are attracted.

Actually maximal matching can also be used for other proposes, e.g. stabilising

some high intra-marginal traders, which can be seen in a mechanism for attracting

GD traders in Section 7.4.3. But one disadvantage of maximal matching is that it

will heavily reduces the profit for high intra-marginal traders, and therefore they
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will leave the market so that other intra-marginal traders will be affected recur-

sively. At the same time, since equilibrium matching always gives more profit to

high intra-marginal traders, some profit seeking traders, like ZIC and RE traders,

will keep increasing their profit margin so that their shouts are difficult to match.

Because of the availability of each traders’ behaviour information, we will adopt

this information for the matching policy. The following are the two additional

policies we used in this framework.

1. Double Equilibrium Matching. We run two matchings one after another.

The first matching is an equilibrium matching based on the bidding price of

shouts. The second matching rematches the matched shouts given by the

first matching in terms of the average clearing price of each sender’s current

best market2, called best clearing price. The second matching matches two

shouts if the gap between their best clearing prices is very small. This is

because their best clearing prices are good enough to attract them and also

don’t give them too much space to increase their profit margin.

2. Behaviour-based Maximal Matching. Maximal matching is guided by the

traders’ behaviours so that extra-marginal shouts are matched only if the

senders are those whom we want to attract, i.e. stable traders.

7.4.1.3 Pricing Policy

The pricing policy will also play a very important role not only in attracting

traders but also in stabilising traders. We use a modified discriminatory k-pricing

policy, where k is dynamically determined for each match according to the two

corresponding traders’ behaviour. Let p(x) indicate the bidding price of shouts

x, s(x) indicate the sender of shout x, best(t) indicate the current best market

of trader t, and p∗(t) is the average clearing price for trader t in best(t). Assume

2The current best market of a trader is the market where it trades most.
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Algorithm 7.4.1: Modified Discriminatory k-pricing Policy

Input: a: ask, b: bid
Output: p̂: clearing price
begin1

if best(s(a)) = mi and best(s(b)) = mi then k = 0.5;2

else if best(s(a)) = mi (or best(s(b)) = mi) then3

if s(b) (or s(a)) is attractable then k = minK (or k = 1−minK);4

else k = 0.5;5

else6

if s(a) is more attractive than s(b) then k = 1−minK;7

else k = minK;8

end9

if p∗(a) ≤ p∗(b) then pa = max(p∗(a), p(a)); pb = min(p∗(b), p(b));10

else pa = p(a); pb = p(b);11

p̂ = pa + k ∗ (pb − pa);12

end13

the current specialist is mi, Algorithm 7.4.1 gives the pseudo-code of the mod-

ified pricing policy, where minK ∈ [0, 1] is set up for different goals. The key

idea of this policy is stabilising/keeping traders a specialist has already attracted

and attracting those that are not attracted yet. The attractability of a trader is

dependent on the overall design goal.

7.4.1.4 Clearing Policy

There are two main clearing policies used in TAC competitions, round-based and

continuous. Round-based clearing clears at the end of each round, while continuous

clearing clears whenever there is a new match available. The matching policy is

sensitive to clearing policy. For instance, maximal matching will be useless with

continuous clearing. Moreover, traders will have chances to revise their shouts

if the market does not clear for some rounds during a day. We use a modified

version of round-based clearing policy in this framework. Instead of clearing in

each round, we choose a fixed number of clearing time points according to the

number of goods each trader has, for example, we clear 5 times a day if each

trader requires to exchange 3 items. Then we distribute clearing time points into
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the 10 rounds of a day by giving greater preference to the first 5 rounds. Thus,

we clear more in the beginning of a day while waiting longer near the end of a

day, because the number of intra-marginal traders become less and less when it is

approaching the end of a day and we want to give unsatisfied traders more chances

to improve their shouts.

7.4.1.5 Charging Policy

Charging is a trade-off between traders’ profits and a specialist’s profit. It is not

closely related to the above policies, but it affects the traders’ market selection.

Therefore, most specialists in previous competitions do not charge in the beginning

of a TAC game in order to attract traders. However, for most high intra-marginal

traders, charging does not affect their profit heavily, because they already reserved

a large profit margin by bidding a very low (high) price to buy (sell). This frame-

work will only focus on profit fee, as other fees, i.e. registration fee, transaction fee

and information fee, could lead to 0 profit even for a trader who has successfully

traded in the market.

7.4.2 Searching Adaptive Mechanisms

We know the main challenge for stabilising/attracting traders is stabilising their

bidding prices, which depends on their bidding strategies. In other words, we

might not be able to find a uniform mechanism that is attractive to traders with

any kind of bidding strategy. Therefore, instead of searching for competitive mech-

anisms in a mixed environment from the very beginning, we propose a two-step

approach. We first identify trader-dependent mechanisms that are competitive in

an environment with only one kind of trader. Then we combine trader-dependent

mechanisms together to achieve mechanisms that are competitive in any environ-

ment.
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Algorithm 7.4.2: Searching Trader-dependent Mechanism

Input: m0: initial mechanism, fm: a function of mechanism to maximise, δ: the
minimum improvement

Output: m∗: the local best mechanism
begin1

CurrBest← m0;2

repeat3

m∗ ← CurrBest;4

foreach policy parameter r do5

m′ ← monotonically update r in m∗;6

if fm(m
′) > fm(CurrBest) then CurrBest← m′;7

end8

until fm(CurrBest) < fm(m
∗) + δ ;9

end10

7.4.2.1 Trader-dependent Mechanism Design

Given the goal of a trader-dependent mechanism that we want to achieve (or a

function of trader-dependent mechanism to maximise), we first set up the test-

ing environment according to the goal and an initial mechanism as the current

best mechanism, and then monotonically modify only one of the parameters in

the search space to compete with the current best to find the next best one that

increases the value of the goal function the most, until we cannot find any modifi-

cation that has any significant improvement of the function. Note that we require

the modification of each parameter to be monotonic, i.e. update/change in one

direction. Algorithm 7.4.2 describes the searching process for trader-dependent

mechanisms. This algorithm will return mechanisms that locally maximise the

goal function. In order to get an overall optimal mechanism, we can repeat this

process with different initialisations.

7.4.2.2 Adaptive Mechanisms with Trader-dependent Mechanisms

Once we obtain trader-dependent mechanisms for each kind of trader offline, we

adapt them online to any market environment. The main idea is to use the clas-

sification learned in Section 7.3 to determine each trader’s category and to apply
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the corresponding trader-dependent mechanism. However, we might end up with

two inconsistent trader-dependent mechanisms that are required to run together

for some environments. In such a case, we have to either apply only one of the

two mechanisms or give higher priority to one of them. In order to make such a

discrimination, we need to ascertain which trader-dependent mechanism will at-

tract more good traders, which can be done, for example, by statistical analysis

of traders’ behaviour.

7.4.3 Experiments

In this section, we show a trader-dependent mechanism that is attractive to intra-

marginal traders with the GD bidding strategy, which is also the most attractive

bidding strategy adopted by traders [Phelps et al., 2010].

GD traders use the market history of submissions and transactions to form their

beliefs over the likelihood of a bid or ask being accepted, and use this belief to

guide their bidding [Gjerstad and Dickhaut, 2001]. Then the bidding strategy is

to submit the shout that maximises a trader’s expected profit, i.e. the product of

its belief function and its linear utility function.

Based on the search space given in Section 7.4.1 and our specialist agent Jackaroo3,

we identify a trader-dependent mechanism that is very good at attracting intra-

marginal GD traders. The value of each parameter of the mechanism is given

in Table 7.1, where Ar and Br are respectively the accepted asks and bids until

round r in one day. We have tested this trader-dependent mechanism (JaGD) with

other competitive agents available from the TAC agents repository4, CUNY.CS.V1

(Cu09.1), CUNY.CS.V2 (Cu09.2), Mertacor (Me09), cestlavie (Ce09), jacakroo

(Ja09) from CAT 2009 final, and PoleCat (Po10), Mertacor (Me10) from CAT

2010 final. Tables 7.2 and 7.3 show the average trading time distribution of one

3Jackaroo has achieved 1st, 2nd and 1st in CAT Tournament 2009, 2010 and 2011, respec-
tively.

4http://www.sics.se/tac/
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Policy Parameter Value

Accepting
F a
t ,F

b
t 6

θa 1−max(0, Ar−Br

Ar
)

θb 1−max(0, Br−Ar

Br
)

Matching Behaviour-based Maximal Matching
Pricing minK 0.15
Clearing Modified Round Based
Charging 12% profit fee

Table 7.1: GD Attractive Mechanism

Specialists
Standard Deviation

Cu09.1 Cu09.2 Me09 Me10 Po10 Ce09 Ja09 JaGD
ZIC Sellers 39.60 40.40 54.20 136.27 56.83 55.07 42.87 74.77 31.95
ZIC Buyers 41.77 36.13 46.23 125.53 67.13 53.93 46.17 83.10 29.64
ZIP Sellers 15.43 16.77 50.00 179.20 62.50 50.83 59.40 65.87 51.04
ZIP Buyers 18.30 21.07 49.00 197.83 64.50 40.90 45.37 63.03 57.24
GD Sellers 20.73 22.46 49.29 77.80 87.43 62.37 37.84 142.09 40.21
GD Buyers 22.91 19.57 51.23 69.50 79.84 69.66 41.34 145.94 40.26
RE Sellers 53.10 47.31 53.59 89.76 69.46 67.90 55.91 62.97 13.43
RE Buyers 55.19 51.56 55.61 86.56 73.07 64.94 55.07 58.00 11.91

Table 7.2: Average Trading Time Distribution of Each Type of Trader

CAT game (500 days), where the bold value in each row shows which market the

traders in this row selected most and the underlined value in each column indicates

which kind of traders were attracted most by the specialist in that column. The

environment is mixed with 70 GD, 70 RE, 30 ZIC, and 30 ZIP buyers and sellers

respectively, with valuations uniformly distributed in [60,160], i.e. the perfect

market equilibrium is 110. From Table 7.2 we can see that JaGD attracted about

30% of GD traders’ trading time (the average for each market is 12.5%). Table 7.3

further shows that most traders attracted by JaGD are intra-marginal GD traders,

and some lower extra-marginal traders are also attracted because of the use of

maximal matching. It is worth mentioning that, except GD traders, this trader-

dependent mechanism is not appealing to other traders, while Me10 is good at

attracting other traders but not GD traders.
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Specialists
Standard Deviation

Cu09.1 Cu09.2 Me09 Me10 Po10 Ce09 Ja09 JaGD
intra-marginal buyers (with valuations between 160 and 110)

ZIC 27.60 17.27 34.13 181.27 65.27 46.20 36.73 91.53 53.39
ZIP 18.70 20.85 42.10 256.15 58.85 27.40 40.90 35.05 79.31
GD 23.97 18.64 36.72 70.92 75.42 64.81 18.53 191.00 57.02
RE 42.53 39.88 48.84 113.66 82.91 68.22 47.84 56.13 25.12

lower extra-marginal buyers (with valuations between 110 and 90)
ZIC 48.25 49.38 56.13 79.38 71.88 58.75 50.38 85.88 14.62
ZIP 16.60 23.40 46.00 89.80 71.80 60.20 34.20 158.00 45.77
GD 28.44 21.44 38.89 47.67 108.89 65.22 33.56 155.89 46.81
RE 68.86 57.86 55.14 66.00 70.29 62.71 59.14 60.00 5.43

other extra-marginal buyers (with valuations between 90 and 60)
ZIC 64.71 61.43 60.86 58.86 65.71 65.00 61.57 61.86 2.39
ZIP 18.40 19.60 79.60 72.60 79.80 75.60 74.40 80.00 26.99
GD 19.40 20.24 76.56 75.32 75.76 78.24 77.00 77.48 26.36
RE 65.16 62.19 62.71 63.23 63.55 62.06 61.61 59.48 1.64

Table 7.3: Average Trading Time Distribution of Buyers

7.5 A Framework for Behaviour-based Mecha-

nism Design

In this section, we summarise our behaviour-based design approach to obtain a

more general adaptive mechanism design framework based on traders’ behaviour.

This framework consists of data acquisition, behaviour-based classification of traders,

defining behaviour-based policies, trader-dependent mechanism design and integrat-

ing trader-dependent mechanisms.

1. Data acquisition collects and aggregates market information, especially trader

related information, which will be the foundation of the other components.

Some statistical and data mining methods can be adapted here.

2. Behaviour-based classification of traders distinguishes traders in terms of

their behaviour. This step heavily depends on the information obtained in

the first step. Some machine learning methods, e.g. decision tree leaning,

might be useful here.
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3. Defining behaviour-based policies determines how to utilise behaviour in spe-

cialist policies. The main contribution of traders’ behaviour in this stage is

connecting the loosely coupled policies to reduce the search space.

4. Trader-dependent mechanism design identifies mechanisms that are compet-

itive in environments with only one of kind of trader.

5. Integrating trader-dependent mechanisms combines all trader-dependent mech-

anisms to achieve mechanisms that are competitive under an environment

containing a mixture of any kinds of traders.

7.6 Summary

We have introduced a behaviour-based adaptive mechanism design approach, based

on the Trading Agent Competition Market Design platform, for a dynamic double

auction environment, where each trader can be active in many discrete time peri-

ods with different valuations, depending on the environment and the decisions of

the mechanism. This approach consists of behaviour-based trader classification,

mechanism design for specific environments (called trader-dependent mechanism

design) and integrating trader-dependent mechanisms for any complex environ-

ments that are not known in advance. To the best of my knowledge, this is the first

market design framework depending on traders’ behaviour (or market history) to

learn the market environment and guide market decisions. By integrating traders’

behaviour into market policies, we are able to constrain the search space of double

auction mechanisms. More importantly, because of gaining an understanding of

the market environment, the resulting mechanisms will apply differential policies

for attracting different traders and therefore be more focused, more competitive

and adaptive. The results have been applied in the CAT player jackaroo which

demonstrated the advantage of this approach in the Trading Agent Competition

Market Design Tournament.



Chapter 8

Conclusion and Future Work

This thesis is about designing games or mechanisms that lead to socially desir-

able outcomes, in environments where the participants are self-interested and hold

private information (type) that is the source of the outcome decision-making of

the mechanism, and hence this is about mechanism design in general. Mechanism

design has focused on how to incentivise participants to reveal their truthful pri-

vate information so that desirable outcomes can be achieved. But most of the

studied environments are static or simple dynamic ones, because the information

uncertainty brought by a dynamic environment makes achieving certain desirable

outcomes impossible in the dynamic environment. However, there are many real

dynamic environments that need better mechanisms and which are not yet well-

studied. In order to address this gap, this thesis offered major contributions to

the mechanism design of two types of dynamic bilateral trading environment.

8.1 Summary of the Major Contributions

This thesis studied two kinds of dynamic bilateral trading environment. One type

is decision-independent, where each trader’s type is independently observed and

123
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therefore the decisions of the auction cannot change it, and the other is decision-

dependent, where traders’ types depend on each other and also vary in response

to the decisions of the auction.

For the first environment, this thesis considered a situation where each trader is

only active in the market for one period of time and during this period that trader’s

valuation is fixed. Under this environment, this thesis proposed a reduction frame-

work to build online double auctions from online one-sided auctions. It was shown

that the truthfulness and competitiveness of these reduced online double auctions

match those of the online one-sided auctions. This thesis also proposed a dedi-

cated corresponding optimal (offline) solution by using augmentation techniques

from bipartite matching. This optimal solution is one kind of VCG mechanism

as it is truthful, efficient and individually rational, but it shows a very significant

computational advantage; namely, it is O(n) times faster than the classical VCG

mechanism. Moreover, the augmentation-based approach can be extended to simi-

lar environments with constraints that are other than the temporal one considered

in this thesis.

For the second environment, this thesis considered a situation where each trader

can be active in many discrete time periods with different valuations, depending

on the environment and the decisions of the mechanism. To address the auc-

tion design problem in this environment, this thesis proposed a behaviour-based

framework to design adaptive online double auctions that can quickly adapt to the

changes/dynamics of the environment. This framework designs mechanisms that

first learn the behaviour model of different kinds of traders from the environment

and then use the learnt results to guide the decision-making of the mechanism in

order to achieve desirable allocations.

As a very good example of the second environment, a fast growing online shopping

platform, which leverages group buying, has also been studied. One key reason

for the success of current group buying shopping platforms such as Groupon is
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the advertising effect. Advertising plays the major role in the dynamics of this

environment, in the sense that buyers may return to buy a product at a regular

price after having tried the product at a discounted price, and may recommend

the product to their friends. However, sufficient modelling of the dynamics in this

environment is not an easy task, and currently no good solution is extant. Nev-

ertheless, this thesis has demonstrated that, even without the advertising effect,

there is no mechanism that is truthful, individually rational and budget-balanced,

if the payment and the transaction size are not predetermined. Although there do

exist simple, truthful, individually rational and budget-balanced mechanisms in

this model, no such mechanism exists that guarantees the number of transactions.

8.2 Future Work

Additional dynamic bilateral trading environments exist that have not been fully

examined, for example, kidney exchange [Ünver, 2010].

Regarding group buying, one further interesting direction is the modelling of the

dynamics of traders, especially the advertising effects and, of course, the corre-

sponding auction design task. For example, Edelman et al. [2011] is trying to

model the environment with two periods but in a static manner because they as-

sumed that all buyers share a common probability of returning in the second period

after their purchases in the first period. Their focus was the profitability of the

seller rather than other traditional goals of mechanism design such as truthfulness

and efficiency. In a real situation, the probability of a consumer purchasing an ad-

ditional product, after his/her first purchase, depends on many factors, including

the consumer’s valuation and the prices of the product in both periods. Moreover,

if a consumer is satisfied with a product, that consumer might recommend it to

friends, which adds another type of dynamics or uncertainty. To address all of

these factors, traditional mechanism design techniques might not be enough.
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Another direction is applying the results in real markets. Although the proposed

mechanisms have shown nice properties, we have also learned a lesson from Vickrey

auction that theoretically beautiful mechanisms might not be applicable in real

markets [Rothkopf, 2007]. There are many reasons why they are not practical.

For example, human traders have bounded rationality while we assume they are

completely rational in theory; traders’ valuations have complicated connections

which have been simplified in theory; and some properties, such as market stabil-

ity, that are very important in practice, are not emphasised in theoretical study.

Therefore, to apply the results to real markets, we need to adapt them to each

individual environment by relaxing some of the properties considered in theory

and caring additional properties of the environment.



Appendix A

Published Work

Part of the results presented in Chapters 3, 4, 5 and 7 have been published in the

following papers:

• Dengji Zhao, Dongmo Zhang, Md Khan, and Laurent Perrussel: Maximal

Matching for Double Auction. In the Proceedings of the 23rd Australasian

Joint Conference on Artificial Intelligence (AI’10: 516–525). (The Best Stu-

dent Paper Award). Part of the results of this paper is included in Chapter 3.

• Dengji Zhao, Dongmo Zhang and Laurent Perrussel: Mechanism Design for

Double Auctions with Temporal Constraints. In the Proceedings of the 22nd

International Joint Conference on Artificial Intelligence (IJCAI’11: 472-477).

The results in this paper are contained in Chapter 4.

• Dengji Zhao, Dongmo Zhang and Laurent Perrussel: How to Make Special-

ists NOT Specialised in TAC Market Design Competition? Behaviour-based

Mechanism Design. In the Proceedings of the 12th International Conference

on Electronic Commerce and Web Technologies (EC-Web’11: 124-135). The

results in this paper are presented in Chapter 7.

• Dengji Zhao, Dongmo Zhang and Laurent Perrussel: Multi-unit Double Auc-

tion under Group Buying. In the Proceedings of the 20th European Con-

ference on Artificial Intelligence (ECAI’12). The results in this paper are

presented in Chapter 5.
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Nisan, N., Roughgarden, T., Éva Tardos, and Vazirani, V. V. (2007). Algorithmic

Game Theory. Cambridge University Press.

Niu, J., Cai, K., and Parsons, S. (2010). A grey-box approach to automated mecha-

nism design. In Proceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems - Volume 1, AAMAS’10, pages 1473–1474.

Niu, J., Cai, K., Parsons, S., Gerding, E., McBurney, P., Moyaux, T., Phelps, S.,

and Shield, D. (2008). Jcat: a platform for the tac market design competition.

In Proceedings of the 7th International Joint Conference on Autonomous Agents

and Multiagent Systems, AAMAS’08, pages 1649–1650.

Parkes, D. C. (2007). Online mechanisms. In Algorithmic Game Theory. Cam-

bridge University Press.

Parkes, D. C. and Duong, Q. (2007). An ironing-based approach to adaptive online

mechanism design in single-valued domains. In Proceedings of the 22nd National

Conference on Artificial Intelligence - Volume 1, AAAI’07, pages 94–101.

Phelps, S., Mcburney, P., and Parsons, S. (2010). Evolutionary mechanism design:

a review. Autonomous Agents and Multi-Agent Systems, 21:237–264.

Robinson, E. R., McBurney, P., and Yao, X. (2009). How specialised are specialists

generalisation properties of entries from the 2008 tac market design competition.

IJCAI Workshop on Trading Agent Design and Analysis (TADA).

Rothkopf, M. H. (2007). Thirteen reasons why the vickrey-clarke-groves process

is not practical. Operations Research, 55(2):191–197.



Bibliography 134

Sandholm, T. (2003). Making markets and democracy work: a story of incentives

and computing. In Proceedings of the 18th international joint conference on

Artificial intelligence, IJCAI’03, pages 1649–1671.

Stavrogiannis, L. C. and Mitkas, P. A. (2009). Cat 2008 post-tournament evalu-

ation: The mertacors perspective. IJCAI Workshop on Trading Agent Design

and Analysis.

Tarjan, R. E. (1983). Data structures and network algorithms. Society for Indus-

trial and Applied Mathematics.
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