Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion

Decomposition of Multi-Player Games

Dengji ZHAO² Supervisor: Dipl.-Inf. Stephan SCHIFFEL¹ Prof. Dr. Michael THIELSCHER¹

> ¹Computational Logic Group Artificial Intelligence Institute

²European Master's Program in Computational Logic

Master Thesis

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
Outlin	е				

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

- 2 Subgame Detection
- Impartial Games
- 4 General Partial Games
- 5 Parallel and Serial Games

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
Outlir	ne				

Motivation

- The Problem That We Studied
- The Games That We Studied
- 2 Subgame Detection
- Impartial Games
- 4 General Partial Games
- 5 Parallel and Serial Games

6 Conclusion

Motivation ●○○	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion				
The Problem	The Problem That We Studied								
Gene	ral Game	Playing							

• Time constraints VS Very large games

Motivation ●○○	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion				
The Problem	The Problem That We Studied								
Gene	ral Game	Playing							

- Time constraints VS Very large games
- Games contain subgames
- Solve a game by solving its subgames?

Motivation ○●○	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion			
The Problem That We Studied								
Previo	ous Work							

 Decomposition of Single Player Games, M. Günther, S. Schiffel and M. Thielscher, 2007

Motivation ○●○	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion			
The Problem	The Problem That We Studied							
Previo	ous Work							

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

- Decomposition of Single Player Games, M. Günther, S. Schiffel and M. Thielscher, 2007
- What about multi-player games?

MotivationSubgame DetectionImpartial Games○○●○○○○○○○

General Partial Games

Parallel and Serial Games Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

The Games That We Studied

Properties of Multi-Player Games

- Alternating Move Games, e.g. Nim, Chess, TicTacToe
- Simultaneous Move Games, e.g. Rock-paper-scissors
- Impartial Games, e.g. Nim
- Partial Games, e.g. TicTacToe, Double-TicTacToe
- Parallel Games, e.g. Parallel-TicTacToe
- Serial Games, e.g. Serial-TicTacToe

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
Outlin	e				

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 2 Subgame Detection
 - Basic Idea
 - Extension
- Impartial Games
- 4 General Partial Games
- 5 Parallel and Serial Games

6 Conclusion

Motivation	Subgame Detection ●○○	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
Basic Idea					
Basic	Definition	S			

(Game). A **game** is a tuple G = (F, A, I, R) where

- F is a set of fluents,
- A is a set of actions,
- I is the initial state of the game, which is a set of ground instances of F,
- R is a set of roles.

Definition

(State). A **state** *S* of a game G = (F, A, I, R) is a set of ground instances of *F*, and *S* can be reached from initial state *I* by playing *G*.

Motivation	Subgame Detection ●○○	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
Basic Idea					
Basic	Definition	s			

(Subgame). A game G = (F, A, I, R) is a **subgame** of G' = (F', A', I', R') iff $F \subseteq F', A \subseteq A', I \subseteq I', R \subseteq R'$, and F, A, I and R are not empty.

Definition

(Subgame Independence). Two subgames Gs = (Fs, As, Is, Rs) and Gs' = (Fs', As', Is', Rs') of game G are **independent** each other iff $Fs \cap Fs' = \oslash$ and $As \cap As' = \oslash$.

Motivation	Subgame Detection ○●○	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
Basic Idea					
Subg	ame Deteo	ction			

- Dependency relations between fluents and actions
 - Precondition
 - e.g. if action *M* is legal then fluent *F* must be true
 - Positive Effect
 - e.g. fluent *F* is true (not true in current state) in next state if a player takes move *M*
 - Negative Effect
 - e.g. fluent *F* is not true (true in current state) in next state if a player takes move *M*

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

- Dependency relations between fluents and actions
 - Precondition
 - e.g. if action *M* is legal then fluent *F* must be true
 - Positive Effect
 - e.g. fluent *F* is true (not true in current state) in next state if a player takes move *M*
 - Negative Effect
 - e.g. fluent *F* is not true (true in current state) in next state if a player takes move *M*
- Independent subgames
 - connected components of fluents and actions with dependency relations

 Motivation
 Subgame Detection
 Impartial Games
 General Partial Games
 Parallel and Serial Games
 Conclusion

 000
 000
 0000
 0000
 00000
 00000
 00000
 000000

 Extension
 0000
 0000
 00000
 00000
 00000
 000000
 000000

Fluent and Action Instantiation

• Why

subgames share fluent and action names

• When

 if the value of one argument of a fluent does not change in the whole game

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
Extension					

Fluent and Action Instantiation

- Why
 - subgames share fluent and action names
- When
 - if the value of one argument of a fluent does not change in the whole game

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

Motivation Subgame Detection Impartial Games General Partial Games Parallel and Serial Games Conclusion

Extension

Fluent and Action Instantiation

- Why
 - subgames share fluent and action names
- When
 - if the value of one argument of a fluent does not change in the whole game

 $\begin{array}{l} \mbox{Example (Nim with two heaps of size 1 and 2):} \\ (\{\mbox{heap}(X,N)\}, \{\mbox{reduce}(X,M)\}, \{\mbox{heap}(a,1), \mbox{heap}(b,2)\}, \{\mbox{player1,player2}\}) \\ fluent/action instantiation \Rightarrow \\ (\{\mbox{heap}(a,N), \mbox{heap}(b,N)\}, \{\mbox{reduce}(a,M), \mbox{reduce}(b,M)\}, \dots) \\ subgame \ detection \Rightarrow \\ (\{\mbox{heap}(a,N)\}, \{\mbox{reduce}(a,M)\}, \{\mbox{heap}(a,1)\}, \{\mbox{player1,player2}\}), \\ (\{\mbox{heap}(b,N)\}, \{\mbox{reduce}(b,M)\}, \{\mbox{heap}(b,2)\}, \{\mbox{player1,player2}\}) \\ \end{array}$

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
Outlin	е				

Impartial Games

- Impartial Property Checking
- Decomposition Search
- 4 General Partial Games
- 5 Parallel and Serial Games

6 Conclusion

An impartial game is an alternating move game and the legal moves of the game only depend on the position (or state) of the game.

- Legal rules
 - if, given any state of the game, the legal rules give the same moves for every player if he has control in that state
- Next rules
 - if, given any state of the game and a move, the next rules give the same next state for every player if he does this move

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion		
Impartial Property Checking							

GDL Game Rule Analysis

- Legal rules
 - if, given any state of the game, the legal rules give the same moves for every player if he has control in that state
- Next rules
 - if, given any state of the game and a move, the next rules give the same next state for every player if he does this move

Counter example (TicTacToe):

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion				
Decomposition Search									

Game Nim and Nimber

Theorem

(Sprague Grundy theorem). Every impartial game under the normal play convention is equivalent to a nimber.

Definition

A **nimber** is a special game denoted by *n for some integer n and $n \ge 0$. We define *0 = {}, and *(n+1) = *n \cup {*n}. Given two nimbers G and H, nim addition $G \oplus H = \{G \oplus h | h \in H\} \cup \{g \oplus H | g \in G\}.$

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
Decompositio	n Search				

Game Nim and Nimber

Definition

A **nimber** is a special game denoted by *n for some integer n and $n \ge 0$. We define *0 = {}, and *(n+1) = *n \cup {*n}. Given two nimbers G and H, nim addition $G \oplus H = \{G \oplus h | h \in H\} \cup \{g \oplus H | g \in G\}.$

Nim example:

きょう きょう きょう きょう きょう

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion				
Decomposition Search									

Game Nim and Nimber

Definition

A **nimber** is a special game denoted by *n for some integer n and $n \ge 0$. We define *0 = {}, and *(n+1) = *n \cup {*n}. Given two nimbers G and H, nim addition $G \oplus H = \{G \oplus h | h \in H\} \cup \{g \oplus H | g \in G\}.$

$${}^{*1} = {}^{*0} \cup {}^{*0} = {}^{\cup} \{ \} = {}^{*0}, \\ {}^{*2} = {}^{*1} \cup {}^{*1} = { \{ \} \} \cup { \{ \{ \} \} } = {}^{*0, *1}$$

Winning Conditions of Nim

the player to make the last move wins (normal play game)

Ithe player to make the last move loses (misère game)

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion			
Decompositio	Decomposition Search							

Theorem

A game is impartial iff its all subgames are impartial.

Decomposition Search

- Subgame search
 - calculate the nimber of each subgame
- Global game search
 - use nim-addition to find optimal strategies

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion				
Decomposition Search									
Expe	Experimental Results								

For Nim with 4 heaps:

time cost(second) for finding the first optimal strategy

		Misère					
Time Cost(s)	Heaps Size						
	1,5,4,2	2,2,10,10	11,12,15,25	12,12,20,20			
Normal	0.4	3.5	6607	10797			
Search							
Decomposition	0.01	0.01	0.07	0.06			
Search							

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
Outlir	ne				
1	Motivation				
2	Subgame De	tection			

Impartial Games

4 General Partial Games

Additional Definitions for Decomposition Search

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Decomposition Search

Parallel and Serial Games

Conclusion

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion				
Additional Definitions for Decomposition Search									
Local	Local Concepts								

A **local goal (resp. terminal) concept** (local concept for short) is a ground predicate call that occurs in the body of the goal (resp. terminal) predicate's definition.

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion				
Additional Definitions for Decomposition Search									
Local	Local Concepts								

A **local goal (resp. terminal) concept** (local concept for short) is a ground predicate call that occurs in the body of the goal (resp. terminal) predicate's definition.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

(<= (**goal** xplayer 100) (line1 x) (line2 x))

there are two local goal concepts, (line 1 x) and (line 2 x).

Motivation	Subgame Detection	Impartial Games	General Partial Games ○●○○○	Parallel and Serial Games	Conclusion			
Additional Definitions for Decomposition Search								
Turn-Move Sequences								

A turn-move sequence is a tuple Seq = (Ts, Ms, Es) where

- *Ts* is a list of player names, indicated by $T_1 \circ T_2 \circ ... \circ T_n$,
- *Ms* is a list of moves, indicated by $M_1 \circ M_2 \circ ... \circ M_n$,
- Es is a set of evaluations of local concepts, where n ≥ 0.

Definition

Turn-move sequence $Seq_1 = (Ts_1, Ms_1, Es_1)$ is **evaluation dominated** by turn-move sequence $Seq_2 = (Ts_2, Ms_2, Es_2)$ **under** a set of local concepts *Cs* iff

•
$$Ts_1 = Ts_2$$
,

•
$$\forall_{C \in Cs}(Seq_1 \models C \Rightarrow Seq_2 \models C).$$

Motivation Subgame Detection

n Impartial Games

General Partial Games

Parallel and Serial Games

Conclusion

Decomposition Search

Decomposition Search II

Subgame Search

For each subgame state,

- expand all legal moves of all players
- return all simplified turn-move sequences

Global Game Search

Using normal search methods, for each global game state,

 choose legal moves from turn-move sequences returned from subgame search

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
Decompositio	on Search				
Expe Subgam	rimental R e Search Results	esults			

One Subgame of Double-Tictactoe					
Search Depth	1	2	3	4	5
All Sequences	18	288	4032	47328	483840
Simplified Seqs	2	4	10	26	64
Time Cost(s)	0.17	2	10	28	55

One Subgame of Double-Tictactoe						
Search Depth	6	7	8	9		
All Sequences	3870720	23224320	92897280	185794560		
Simplified Seqs	148	324	674	912		
Time Cost(s)	127	469	678	790		

Motivation	Subgame Detection	Impartial Games	General Partial Games ○○○○●	Parallel and Serial Games	Conclusion
Decompositi	on Search				
Experimental Results Global Game Search Results					

Time Cost(s)	Search Depth				
	1*2	2*2	3*2	4*2	5*2
Decomposition Search	0.36	4.36	24	80	179
Normal Search	< 1800		> 36	600 * 4	

	Search Depth			
	6*2	7*2	8*2	9*2
Decomposition Search	301	1022	1530	1793
Normal Search		> 36	600 * 4	

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
Outlir	ne				

Motivation

- 2 Subgame Detection
- Impartial Games
- 4 General Partial Games
- 5 Parallel and Serial Games
 - Parallel Games
 - Serial Games

tivation	Subgame	Detection

Impartial Games

General Partial Games

Parallel and Serial Games

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Conclusion

Parallel Games

Additional Work for Subgame Detection

Properties of Parallel Games:

- At least two independent subgames
- A player has to move in all subgames on his turn
- All subgames share move names (called compound moves)

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games ●○○○○○	Conclusion
Parallel Game	s				

Additional Work for Subgame Detection

Properties of Parallel Games:

- At least two independent subgames
- A player has to move in all subgames on his turn
- All subgames share move names (called compound moves)

Example

Parallel-TicTacToe has two tictactoe subgames, these two subgames share one move name *mark*, e.g. (mark ?x1 ?y1 ?x2 ?y2)

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
				••••	

Parallel Games

Additional Work for Subgame Detection

Properties of Parallel Games:

- At least two independent subgames
- A player has to move in all subgames on his turn
- All subgames share move names (called compound moves)

Example

Parallel-TicTacToe has two tictactoe subgames, these two subgames share one move name *mark*, e.g. (mark ?x1 ?y1 ?x2 ?y2)

We have to find and split compound moves

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
				•00000	

Parallel Games

Additional Work for Subgame Detection

Properties of Parallel Games:

- At least two independent subgames
- A player has to move in all subgames on his turn
- All subgames share move names (called compound moves)

Example

Parallel-TicTacToe has two tictactoe subgames, these two subgames share one move name *mark*, e.g. (mark ?x1 ?y1 ?x2 ?y2)

We have to find and split compound moves

• by analyzing next and legal rules

otivation	Subgame	Detectio

Impartial Games

Games Gen

General Partial Games

Parallel and Serial Games Conclusion

Parallel Games

Compound Move Detection Example

Next Ru	les :
(1).(<=	(next (cell1 ?x1 ?y1 x))
	(does xplayer (mark ?x1 ?y1 ?x2 ?y2)))
(2).(<=	(next (cell1 ?x1 ?y1 o))
	(does oplayer (mark ?x1 ?y1 ?x2 ?y2)))
(3).(<=	(next (cell1 ?x ?y ?mark))
	(true (cell1 ?x ?y ?mark))
	(does xplayer (mark ?x1 ?y1 ?x2 ?y2))
	(distinctcell ?x ?y ?x1 ?y1))
(4).(<=	(next (cell1 ?x ?y ?mark))
	(true (cell1 ?x ?y ?mark))
	(does oplayer (mark ?x1 ?y1 ?x2 ?y2))
	(distinctcell ?x ?y ?x1 ?y1))

```
Legal Rules:
(<= (legal ?player (mark ?x1 ?y1 ?x2 ?y2))
(true (control ?player))
(true (cell1 ?x1 ?y1 b))
(true (cell2 ?x2 ?y2 b)))
```

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion			
Parallel Gam	Parallel Games							
Decomposition Search								

Subgame Search

 normal alternating move or simultaneous move game search methods

Global Game Search

 make sure subgame search gets equal length plans in all subgames

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion		
Parallel Games							
Decomposition Search							

Subgame Search

- normal alternating move or simultaneous move game search methods
- Global Game Search
 - make sure subgame search gets equal length plans in all subgames

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion			
Parallel Gam	Parallel Games							
Decomposition Search								

- Subgame Search
 - normal alternating move or simultaneous move game search methods
- Global Game Search
 - make sure subgame search gets equal length plans in all subgames

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

otivation	Subgame	Detection

Impartial Games

General Partial Games

Parallel and Serial Games

Conclusion

Serial Games

Additional Work for Subgame Detection

Properties of Serial Games

- At least two independent subgames
- All subgames are ordered and played one after another
- Only one subgame is played in each turn

Motivation Subgame Detectio

Impartial Games

General Partial Games

Parallel and Serial Games

Conclusion

Serial Games

Additional Work for Subgame Detection

Properties of Serial Games

- At least two independent subgames
- All subgames are ordered and played one after another
- Only one subgame is played in each turn

We have to find the order between subgames

Motivation Subgame Detection

n Impartial Games

General Partial Games

Parallel and Serial Games

Conclusion

Serial Games

Additional Work for Subgame Detection

Properties of Serial Games

- At least two independent subgames
- All subgames are ordered and played one after another
- Only one subgame is played in each turn

We have to find the order between subgames

 by analyzing dependency relations between actions and fluents Motivation Subgame Detection

tion Impartial Games

General Partia

Parallel and Serial Games

Conclusion

Serial Games

Subgame Order Detection

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion	
Serial Games	\$					
Decomposition Search						

Subgame Search

• normal alternating move or simultaneous move game search methods

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

Global Game Search

control subgame search in terms of the order

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion			
Serial Games	Serial Games							
Decomposition Search								

- Subgame Search
 - normal alternating move or simultaneous move game search methods

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日本 のへで

- Global Game Search
 - control subgame search in terms of the order

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion			
Serial Games	Serial Games							
Decomposition Search								

- Subgame Search
 - normal alternating move or simultaneous move game search methods

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日本 のへで

- Global Game Search
 - control subgame search in terms of the order

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion	
Outlir	ne					
1	Motivation					
2	2 Subgame Detection					
3	Impartial Gar	nes				

- General Partial Games
- 5 Parallel and Serial Games

Done and ToDo	Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
	Done	and ToDo				

What We Have Done:

- subgame detection algorithm and
- decomposition search algorithms for different classes of games

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion		
Done and ToDo							

What We Have Done:

- subgame detection algorithm and
- decomposition search algorithms for different classes of games

What Can be Improved:

- apply pruning techniques in decomposition search of partial games, e.g. alpha-beta pruning
- use local concept evaluations more efficiently in global game search

Motivation	Subgame Detection	Impartial Games	General Partial Games	Parallel and Serial Games	Conclusion
Done	and ToDo				

Thank You!!

Appendix

For Further Reading

For Further Reading I

🍆 John H. Conway On Numbers and Games. Academic Press, 1976.

- 🛸 Elwyn R. Berlekamp, John H. Conway, Richard K. Guy Winning Ways 2nd Edition. 2001.

Martin Müller

Decomposition search: A combinatorial games approach to game tree search, with applications to solving Go endgames 1999.

Appendix ●●○○

For Further Reading

For Further Reading II

- M. Günther, S. Schiffel and M. Thielscher Decomposition of Single Player Games 2007.
- Eric Schkufza

Decomposition of Games for Efficient Reasoning 2008.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

For Further Reading

Time Complexity Comparison I

Impartial and Partial Games

Assume that a game G has n subgames, $G_1, G_2, ..., G_n$ with $V_1, V_2, ..., V_n$ states respectively,

- normal search: $O(V_1 * V_2 * ... * V_n)$
- decomposition search: $O(V_1 + V_2 + ... + V_n)$

Example

For double-tictactoe, the number of states is about 18!(including revisited states), while the state for each subgame is about $\prod_{n=1}^{9} (2n)$ which is $\prod_{n=1}^{9} (2n-1)$ times smaller than 18!

For Further Reading

Time Complexity Comparison II

Parallel Games

Assume that a parallel game G has n subgames, G_1 , G_2 , ..., G_n with V_1 , V_2 , ..., V_n states respectively,

- normal search: $O(V_1 * V_2 * ... * V_n)$
- decomposition search: $O(V_1 + V_2 + ... + V_n)$

Serial Games

Assume that a serial game G has n subgames, for subgame *i* there are V_i states and T_i terminal states

onormal search:

 $O(V_1 + T_1 * V_2 + T_1 * T_2 * V_3 + \dots + T_1 * T_2 * \dots * T_{n-1} * V_n)$

• decomposition search: $O(V_1 + V_2 + ... + V_n)$