Mechanism Design for Double Auctions with Temporal Constraints

Dengji Zhao, Dongmo Zhang and Laurent Perrussel

Contributions

We introduce an extended double auction model where market clearing is restricted by temporal constraints. In this model, we propose a Vickrey-Clarke-Groves (VCG) mechanism based on bipartite matching. The key contributions are

- an **efficient & monotonic allocation** based on maximum-weighted matching,
- a **faster algorithm** for computing VCG payment.

Our Mechanism

The VCG mechanism is an **efficient** and **truthful** mechanism consisting of

- 1. an efficient **allocation policy**, i.e. it maximises the sum of the valuation of the traders who have goods in the end.
- 2. a **payment policy**, which is independent of the trader's valuation.
 - Clarke pivot payment, the classical VCG payment, charges each trader the harm he causes to other traders.
- Based on the bipartite graph representation, our mechanism consists of
 - an efficient & monotonic maximum-weighted bipartite matching allocation,
 - an alternating path based **min-max payment**.

Maximum-weighted Bipartite Matching Allocation

The Model

Consider a double auction market where

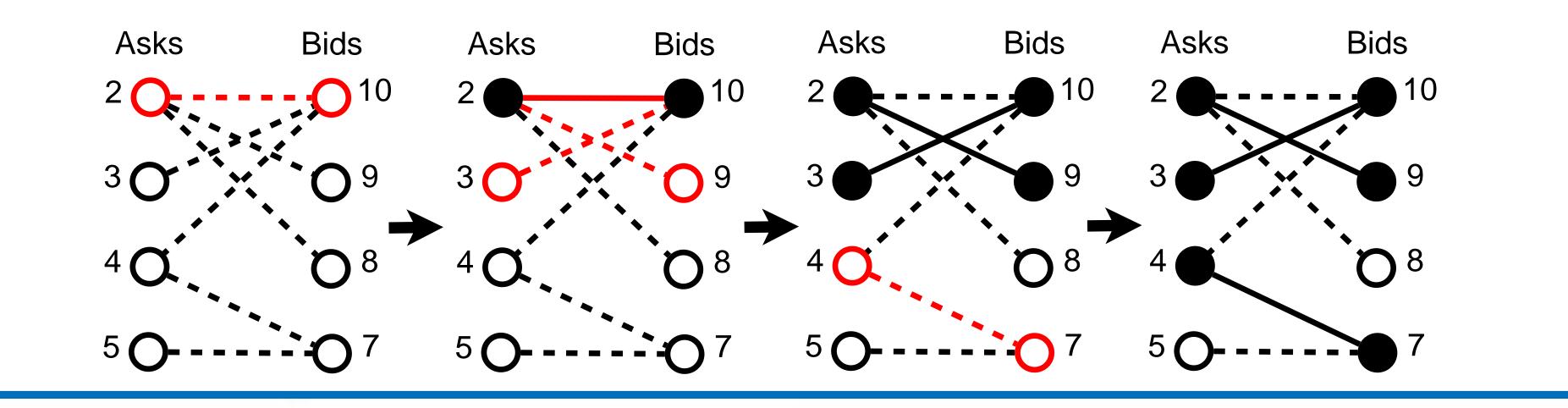
- **multiple** sellers and **multiple** buyers trade one commodity simultaneously,
- each seller/buyer supplies/demands a **single unit** of the commodity.

The **type** of trader (seller or buyer) *i* is $\theta_{i} = (\mathbf{v}_{i}, \mathbf{s}_{i}, \mathbf{e}_{i})$, where

- v_i is *i*'s valuation of a single unit of the commodity,
- s_i and e_i are the starting point and the ending point of the time constraint [s_i, e_i].

We focus on **direct-revelation** mechanisms where traders are required to directly report their type to the auctioneer. We call a report from a seller **ask**, and a report from a buyer **bid**. An ask $\theta_i = (v_i, s_i, e_i)$ and a bid $\theta_i =$ (v_j, s_j, e_j) are **matchable** (i.e. item exchanging Constructs a maximum-weighted matching by

- beginning with the empty matching,
- repeatedly performing augmentations using augmenting paths of maximum weight increase until there is no more augmenting path with positive weight increase.

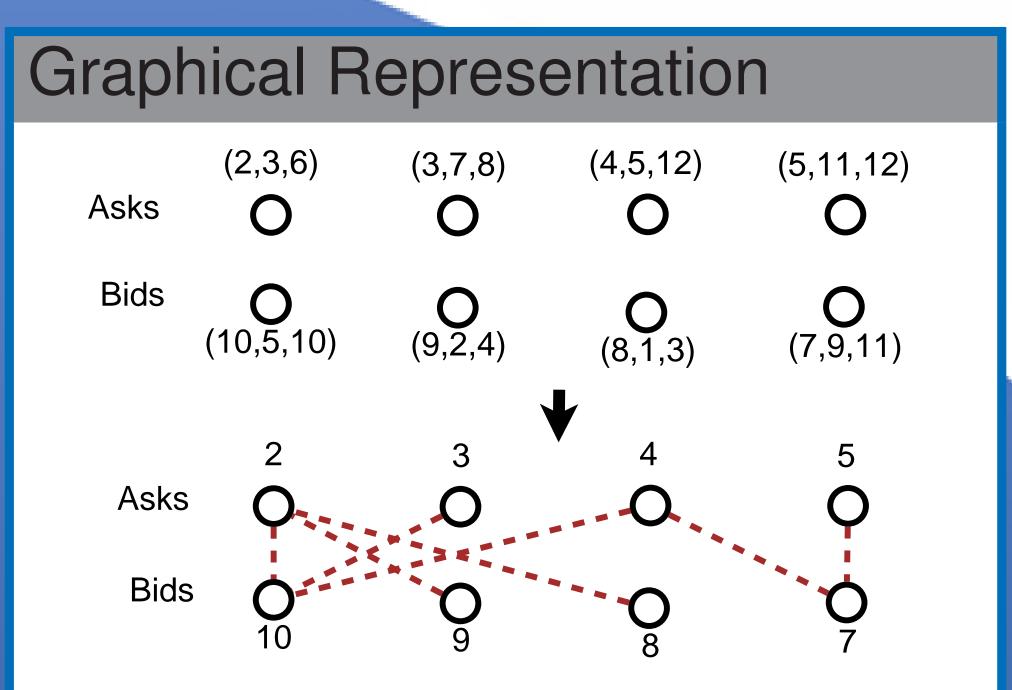


Min-Max Payment

For each matched ask/bid, looking for **the best substitution** and **the lowest loss** if the ask/bid was not participated. We get this from the following abridging and replacement paths start from the ask/bid.

- **replacement paths** give all ways to remove the ask/bid by giving a substitution,
- **abridging paths** give all ways to remove the ask/bid by unmatching another bid/ask.

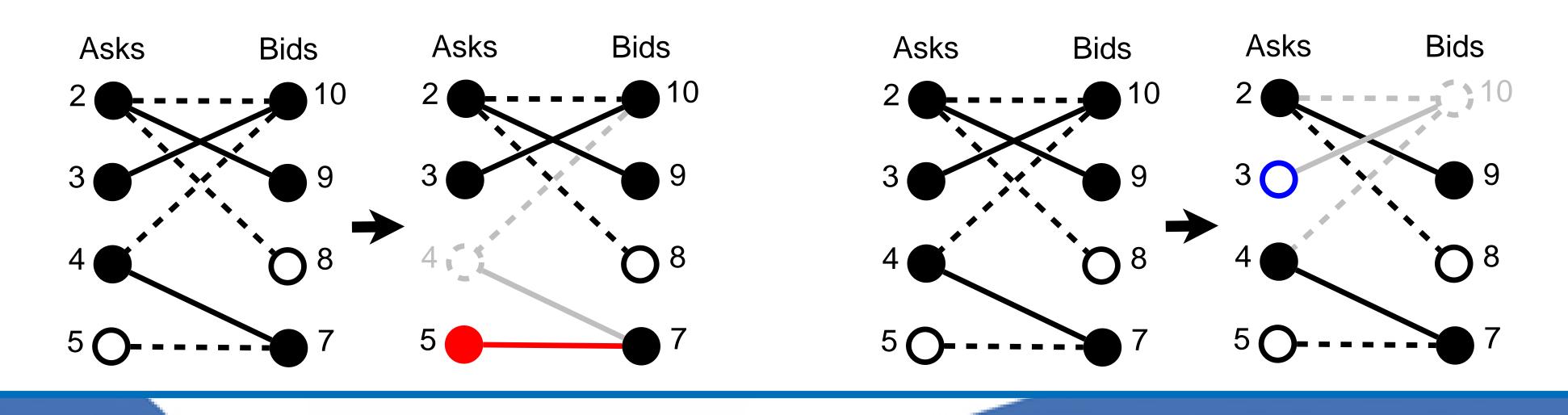
can happen between *i* and *j*) iff $v_i \leq v_j$ and $[\mathbf{s_i}, \mathbf{e_i}] \cap [\mathbf{s_j}, \mathbf{e_j}] \neq \emptyset$.



The above graph shows an example of mapping reports into a bipartite graph. A **matching** M in graph is a set of pair-wise non-adjacent edges. Given a matching M, an M-alternating path is a path in which the edges belong alternatively to M and not to M.

The payment is

- for an ask: the **minimum** valuation of all the substitutions and all possible bids to loss,
- for a bid: the **maximum** valuation of all the substitutions and all possible asks to loss.



Properties of Our Mechanism

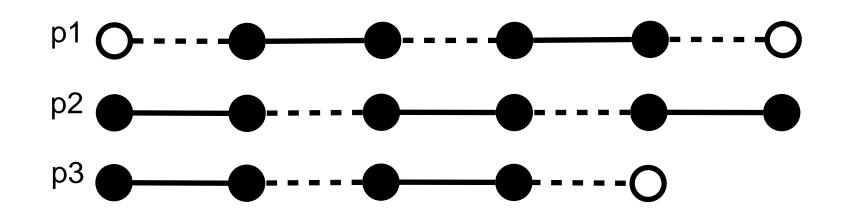
From the allocation:

- Efficient, i.e. maximising social welfare
- Monotonic, i.e. for any matched trader, if he reported a better ask/bid, he should be matched
- Complexity, can be implemented in $O(n^3)$, where n is the number of traders

From the payment:

- *M*-augmenting path: *M*-alternating path whose endpoints are free (unmatched).
- *M*-abridging path: *M*-alternating path whose first and last edge are in *M*.
- *M*-replacement path: *M*-alternating path with one endpoint in *M* and the other is NOT in *M*.

The following gives an example for each of the above paths (lines are edges in the matching).



- **Truthful**, giving the same payment as Clarke pivot payment
- Individual Rational, i.e. no payment for unmatched traders
- Complexity
 - does **NOT** need to rerun the allocation for each matched ask/bid,
 - can be implemented O(n) times **faster** than Clarke pivot payment.

References

- A. Blum, T. Sandholm, and M. Zinkevich. Online algorithms for market clearing. *J. ACM*, 2006.
 R. B. Myerson and M. A. Satterthwaite. Efficient mechanisms for bilateral trading. *Journal of Economic Theory*, 1983.
 N. Niser, and A. Barara, Algorithmic mechanism, design, *Conversed Economic Releasing*, 120, 140, 1000.
- 3] N. Nisan and A. Ronen. Algorithmic mechanism design, *Games and Economic Behavior*, pages 129–140, 1999.
- [4] D. C. Parkes. Online mechanisms. In *Algorithmic Game Theory*. Cambridge University Press, 2007.
- [5] Y. Engel, M. P. Wellman, and K. M. Lochner. Bid expressiveness and clearing algorithms in multiattribute double auctions, *Proceedings of the 7th ACM conference on Electronic commerce*, 2006.