Multi-unit Double Auction under Group Buying

Dengji Zhao^{1,2}
Dongmo Zhang¹ Laurent Perrussel²

¹Intelligent Systems Laboratory University of Western Sydney, Australia

²IRIT, University of Toulouse, France

ECAl'12

Group Buying - Collective Buying

Group Buying Example

Features of Existing Group Buying Platforms

Features

- one day one deal with big discount
- sellers are filtered
- a minimum number of purchases to make a deal on
- email, social networks (e.g. facebook)
- too much money flows to the company (50%)

Limitations of Existing Group Buying Platforms

Limitations

- price is predetermined and a deal can fail
- sellers' participation is limited
- buyers can't express their interest

We Want More...

What we want?

- allow sellers to compete for a deal
- a richer valuation expression for both buyers and sellers
- more transactions (more flexible price)
- less money moving out of traders

We Want More...

What we want?

- allow sellers to compete for a deal
- a richer valuation expression for both buyers and sellers
- o more transactions (more flexible price)
- less money moving out of traders

Mechanism Design

Outline

- Background
 - Mechanism Design
 - Desiderata of Mechanism Design
- Multi-unit Double Auction under Group Buying
 - The Goal
 - The Model
 - Theoretical Results
- 3 Conclusion

Outline

- Background
 - Mechanism Design
 - Desiderata of Mechanism Design
- 2 Multi-unit Double Auction under Group Buying
- 3 Conclusion

Mechanism Design (Reverse Game Theory)

Mechanism Design (Reverse Game Theory)

Mechanism design answers...

How to design a mechanism which leads to a desired outcome?

Desiderata of Mechanism Design

Properties of the Outcomes

- IC incentive compatibility (truthfulness)
- Eff. social-welfare maximisation (efficiency)
 - IR individual rationality (no agent worse off)
- (W)BB (weak) budget balance (zero profit for the market owner)

. . .

Properties of the Outcomes

- IC incentive compatibility (truthfulness)
- Eff. social-welfare maximisation (efficiency)
 - IR individual rationality (no agent worse off)
- (W)BB (weak) budget balance (zero profit for the market owner)

...

Outline

- Background
- Multi-unit Double Auction under Group Buying
 - The Goal
 - The Model
 - Theoretical Results
- 3 Conclusion

The Goal

is to satisfy

- allow sellers to compete for a deal
- a richer valuation expression for both buyers and sellers
- more transactions (more flexible price)
- less money moving out of traders

The Goal

Setting Related

- allow sellers to compete for a deal
- a richer valuation expression for both buyers and sellers

Design Related

- more transactions (more flexible price)
- less money moving out of traders

The Goal

The Goal

Setting Related

- allow sellers to compete for a deal
 - multiple sellers
- a richer valuation expression for both buyers and sellers
 - monotonic valuation with group buying discount

Design Related

- more transactions (more flexible price)
 - maximising trading size
- less money moving out of traders
 - (weak) budget balance

Basic Setting

A multi-unit double auction:

- multiple sellers
- multiple buyers
- one commodity
- each trader supplies/demands multiple units

Richer Valuation Expression

Trader *i* has valuation function $v_i : \mathbb{Z} \to \mathbb{R}$.

- Seller:
 - unlimited supply
 - monotonic: $v_i(k) \le v_i(k+1)$
 - group buying discount: $\frac{v_i(k)}{k} \ge \frac{v_i(k+1)}{k+1}$
- Buyer:
 - demands ci units
 - $v_i(k) = v_i(c_i) > 0$ for all $k \ge c_i$, otherwise $v_i(k) = 0$

Setting Fixed!

Setting Related

- allow sellers to compete for a deal
 - multiple sellers
- a richer valuation expression for both buyers and sellers
 - monotonic valuation with group buying discount

Design Related

- more transactions (more flexible price determination)
 - maximising trading size
- less money moving out of traders
 - (weak) budget balance

Setting Fixed!

Setting Related

- allow sellers to compete for a deal
 - multiple sellers
- a richer valuation expression for both buyers and sellers
 - monotonic valuation with group buying discount

Design Related

- more transactions (more flexible price determination)
 - maximising trading size
- less money moving out of traders
 - (weak) budget balance

The Design Task

- maximising trading size
- (weak) budget balance
- truthfulness
- individual rationality

The Design Task

- maximising trading size
- (weak) budget balance
- truthfulness
- individual rationality

The Model

The Design Task

- maximising trading size
- (weak) budget balance
- truthfulness
- individual rationality

Existence of IC, IR, BB Auctions

Theorem

There exists a (weakly) budget balanced, individually rational, and truthful multi-unit double auction.

Existence of IC, IR, BB Auctions

Existence Examples

- do nothing! i.e. no transaction, no payments.
- fixed-price auctions, i.e. price doesn't depend on traders.

Existence of IC, IR, BB Auctions

Existence Examples

- do nothing! i.e. no transaction, no payments.
- fixed-price auctions, i.e. price doesn't depend on traders.

Existence of IC, IR, BB Auctions

Existence Examples

- do nothing! i.e. no transaction, no payments.
- fixed-price auctions, i.e. price doesn't depend on traders.

Question

Can we have something other than these?

There is NO (weakly) budget balanced, individually rational and truthful multi-unit double auction, aiven that

• both the trading size and the payment are neither seller-independent nor buyer-independent.

There is NO (weakly) budget balanced, individually rational and truthful multi-unit double auction, given that

 both the trading size and the payment are neither seller-independent nor buyer-independent.

There is NO (weakly) budget balanced, individually rational and truthful multi-unit double auction, given that

 both the trading size and the payment are neither seller-independent nor buyer-independent.

Definition

We say a parameter of a double auction is seller-independent (buyer-independent) if the value of the parameter does not depend on sellers' (buyers') type reports.

There is NO (weakly) budget balanced, individually rational and truthful multi-unit double auction, given that

 both the trading size and the payment are neither seller-independent nor buyer-independent.

Why?

buyers want to form a bigger group while sellers might not!

- buyers with larger group will lower their payments
- a seller's profit might not maximised when selling more

Partially Truthful Auctions

Theorem

There exist (weakly) budget balanced, individually rational, and one-sided truthful multi-unit double auctions, given that both the trading size and the payment are neither seller-independent nor buyer-independent.

Partially Truthful Auctions

Second Price Auction

Given type profile report $v = (v^B, v^S)$, assume that $v_1^B(1) \ge v_2^B(1) \ge \cdots \ge v_m^B(1)$.

- Let $w(k) = \min \operatorname{argmin}_i v_i^S(k)$ and $p(k) = \min_{i \neq w(k)} \frac{v_i^S(k)}{k}$ or ∞ if there is only one seller.
- 2 Let $k^* = \max\{k | v_k^B(1) \ge p(k)\}.$
- The first k^* buyers, i.e. buyers of valuation $v_1^B, v_2^B, \dots, v_{k^*}^B$, receive one unit of the commodity each and each of them pays $p(k^*)$.
- 4 Seller $w(k^*)$ sells k^* units of the commodity and receives payment $p(k^*) \cdot k^*$.
- The remaining traders lose without payment.

Not Done Yet!

We faced impossibility!

Not Done Yet!

We faced impossibility! but something is still missing...

Not Done Yet!

We faced impossibility! but something is still missing...

- maximising trading size
- (weak) budget balance
- truthfulness
- individual rationality

Not Done Yet!

We faced impossibility! but something is still missing...

- maximising trading size
- (weak) budget balance
- truthfulness
- individual rationality

Impossibility II

 There is no (weakly) budget balanced, individually rational, truthful multi-unit double auction that can guarantee trading size.

Outline

- Background
- 2 Multi-unit Double Auction under Group Buying
- 3 Conclusion

Summary

Multi-unit double auction under group buying:

- allow sellers to compete for a deal
 - multiple sellers
- a richer valuation expression for both buyers and sellers
 - monotonic valuation with group buying discount
- o more transactions (more flexible price determination)
 - maximising trading size
- less money moving out of traders
 - (weak) budget balance

Summary

Multi-unit double auction under group buying:

- allow sellers to compete for a dea
 - multiple sellers
- a richer valuation expression for both buyers and sellers
 - monotonic valuation with group buying discount
- o more transactions (more flexible price determination)
 - maximising trading size
- less money moving out of traders
 - (weak) budget balance

truthfulness, individual rationality

Future Work

- Iimited supply case, e.g. social welfare, utility calculation
 - For instance, a seller supplies two units with unit prices $p_1 > p_2$ for selling one and two units respectively. If we end up with one unit left for the seller, we might consider that the seller has a valuation of p_1 for this unsold unit.
- online multi-unit double auction, i.e. the advertising effect
 - How many buyers will return?
 - Will they tell the product to others?

Q & A

Thank you for your attention!