Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion

Maximal Matching for Double Auction

Dongmo Zhang¹ Dengji Zhao^{1,2} Md Khan¹ Laurent Perrussel²

¹Intelligent Systems Laboratory University of Western Sydney, Australia

²IRIT, University of Toulouse, France

Al'10 - Dec 2010

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion

Stock Exchanges

		X	Shar	e in	Au	stra	lia	+ and per
	LAST	VOL	OTHER STOCKS	BID	OFFER	LAST	VOL	
	10.0		GUA INTER	2.43	2.45	2:43	58T	GROUP
	-074		GYMPIE GLD	33	0.335	0.335	37T	
	0.09		H POYNTON	06,00	0.94	0.94	38T	INSURAL
	0.04		HALL GOLD	0.23	0,25	0.23	0	TRACT
	0.26			0.29	10.31	0.295	LIT	
	0.39		HAMPTON	0.045	0.06	0.045		Name -
	048	U	HANCOCK GR	- 60	.62	1.60	5T	
	0.30		HAOMA	0.28	29	0.27	IHT	
	.075	TUT	HARDIE J. HARDMAN	-5 28/		3.30	4417.	RS.
	0.34		HARGRAVES	0.96	O.Pr	0.063	48	TO ISP
	0.18	381	HARRINGTON	0.87	11-	0.35		ASX100
44	5.45	0	Linner		P SD	0.50	21	20 LEAD
		8T	Lione -	The second		4.15	0	ALL MIN
25			HARTEC	12 3	2.55	2.55		ALL RES
	-044		HARUEY	6 ()	117	0=15	35T	ALL INC
en u	004		HAWKER	8.65	-0n		97T	ALL ORD
	1=69	0	HAZEL TON	2.21		8.65	44T	TRONG

Background	Existing Matching	Maximal Matching	Experiments	Conclusion

How to Choose Stock Exchanges

Question

Which stock market will you choose?

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

How to Choose Stock Exchanges

Question

Which stock market will you choose?

The one...

- you can earn more money
- has higher chance to get traded
- most other people go

Background	Existing Matching	Maximal Matching	Experiments	Conclusion

How to Choose Stock Exchanges

Question

Which stock market will you choose?

The one...

- you can earn more money
- has higher chance to get traded
- most other people go

How do you know?

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
How to (Choose Stock	Exchanges		

Question

Which stock market will you choose?

The one...

- you can earn more money
- has higher chance to get traded
- most other people go

How do you know?

Market Liquidity

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
What is M	larket Liquidit	y?		

- number of transactions
- trade volume (buy/sell-volume)
 - the sum of the price of transacted orders

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日本 のへで

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
What is M	larket Liquid	ity?		

number of transactions

- Itrade volume (buy/sell-volume)
 - the sum of the price of transacted orders

Question

Can a stock market owner improve market liquidity to get more traders and more profit?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
\//batio		:		

What is Market Liquidity?

number of transactions

- Itrade volume (buy/sell-volume)
 - the sum of the price of transacted orders

Question

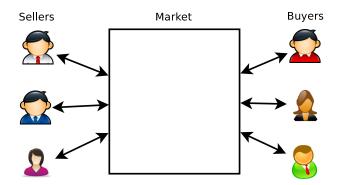
Can a stock market owner improve market liquidity to get more traders and more profit?

Double Auction

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Outline				

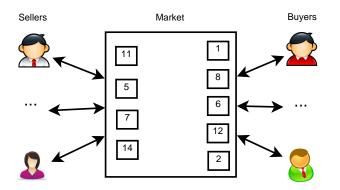
- Background
 - Double Auction
- 2 Existing Matching
 - Equilibrium Matching
- 3 Maximal Matching
 - The Algorithm
 - Properties of Maximal Matching
- 4 Experiments
 - Settings
 - Results

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
Outline				



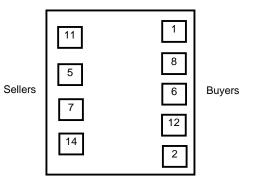
- 2 Existing Matching
- 3 Maximal Matching
- 4 Experiments
- 5 Conclusion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・


Background ●ooo	Existing Matching	Maximal Matching	Experiments	Conclusion
Double Auction				
Model				

- Three roles: seller, buyer, and market maker.
- One commodity, e.g. google's stocks.

Background ●ooo	Existing Matching	Maximal Matching	Experiments	Conclusion
Double Auction				
Model				

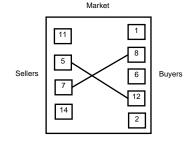

- Three roles: seller, buyer, and market maker.
- One commodity, e.g. google's stocks.

Background o●oo	Existing Matching	Maximal Matching	Experiments	Conclusion
Double Auction				
Exchang	ging Rules			

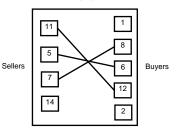
For market maker:

- which sell offer to be matched with which buy offer?
- what is the price for each match?

Market


Background oo●o	Existing Matching	Maximal Matching	Experiments	Conclusion
Double Auction				
Definition	S			

- Ask: offer (price) submitted by a seller, the minimum price willing to sell
- **Bid**: offer (price) submitted by a buyer, the maximum price willing to buy
- Matching: a set of pairs of ask and bid, where in each pair
 - bid's price \geq ask's price
 - no bid or ask belongs to more than one pair
- Market Liquidity:
 - number of transactions (matching size)
 - trade volume (buy/sell-volume)
 - buy-volume: the sum of the price of transacted bids
 - sell-volume: the sum of the price of transacted asks
- Auctioner's Profit: The price difference between matched bids and asks


< ロ > < 同 > < 三 > < 三 > 三 = < の < ○</p>

Background 000●	Existing Matching	Maximal Matching	Experiments	Conclusion
Double Auction				
Matching	g Examples			

- bid's price \geq ask's price
- no bid or ask belongs to more than one pair

Market

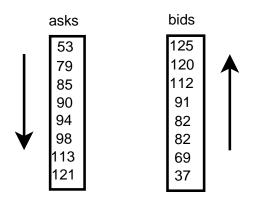
$$Profit = (12+8)-(5+7) = 8$$

Profit = (12+8+6)-(5+7+11) = 3

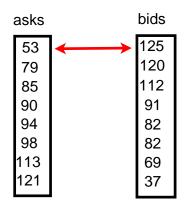
ロ> < @> < E> < E> < E< のQの

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Outline				

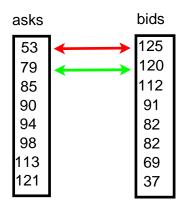
- Existing Matching
 Equilibrium Matching
- 3 Maximal Matching
- 4 Experiments

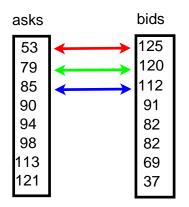

5 Conclusion

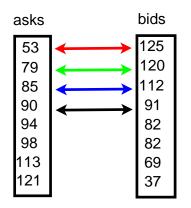
Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Equilibrium Matching				
Main Idea				


- Sort all asks (bids) in ascending (descending) order w.r.t. their price.
- ❷ Based on this sort order, starting at the top, add each ask-bid pair to the result matching, if ask's price ≤ bid's price.

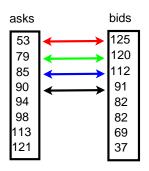
▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@


Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Equilibrium Matching				
Main Idea				


Background	Existing Matching ●○	Maximal Matching	Experiments	Conclusion
Equilibrium Matching				
Main Idea				

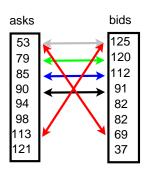

Background	Existing Matching ●○	Maximal Matching	Experiments	Conclusion
Equilibrium Matching				
Main Idea				

Background	Existing Matching ●○	Maximal Matching	Experiments	Conclusion
Equilibrium Matching				
Main Idea				



Background	Existing Matching ●○	Maximal Matching	Experiments	Conclusion
Equilibrium Matching				
Main Idea				

Background	Existing Matcl	ning	Maximal Matching	Experiments 0000	Conclusion
Equilibrium Match	ing				
D	· · · -				


Properties of Equilibrium Matching

- profit maximizing (141)
- e market liquidity can be improved
 - transactions: 4
 - 2 buy/sell-volume: 448/307

Background	Existing Matching ○●	Maximal Matching	Experiments	Conclusion
Equilibrium Match	ing			

Properties of Equilibrium Matching

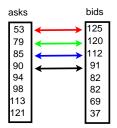
- profit maximizing (141)/97
- e market liquidity can be improved
 - transactions: 4
 - 2 buy/sell-volume: 448/307

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
Outline				

- 2 Existing Matching
- 3 Maximal Matching
 - The Algorithm
 - Properties of Maximal Matching

Experiments


5 Conclusion

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
The Algorithm				
What We	Want?			

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

- Maximizing market liquidity
- Keeping as much profit as we can

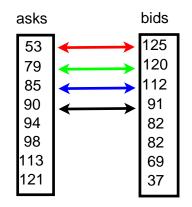
Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
General	Idea			

Equilibrium Matching

- Starting from equilibrium matching
- Matching unmatched shouts (asks and bids) as many as we can
- Oecreasing profit as less as we can

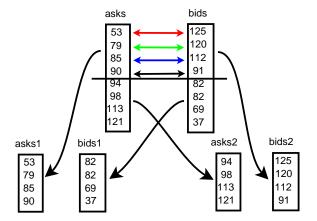
Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

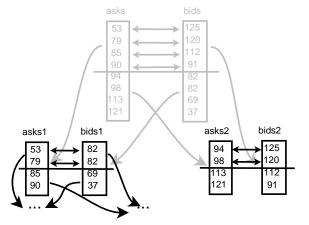

Looking Extra Matchable Shouts

Question

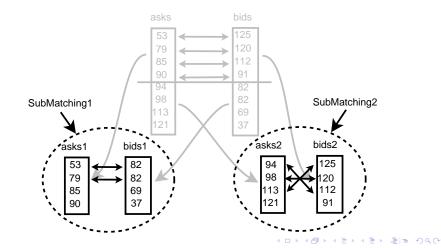
How to find extra matchable shouts?


Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
The Algorithm				
Looking	Extra Matcha	ble Shouts		

Equilibrium Matching

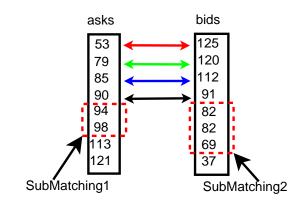

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
Looking	Extra Matcha	ble Shouts		

Decompose Matching



Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
Looking	Extra Matcha	ble Shouts		

Maximal Matching in Sub-matchings



Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
Looking	Extra Matcha	ble Shouts		
	Maximal M	atching in Sub-ma	atchings	

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
Looking	Extra Matcha	ble Shouts		

Extra Matchable Shouts

Backg	round

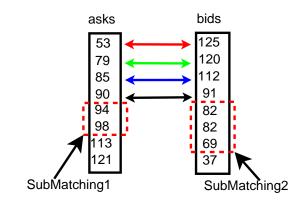
Existing Matching

Maximal Matching

Experiments

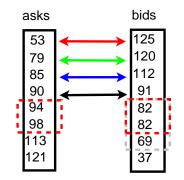
Conclusion

The Algorithm


Decreasing Profit as Less as We Can

Question

How to keep profit as much as we can?


Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
Decreasing Profit as Less as We Can				

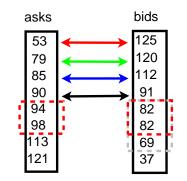
Extra Matchable Shouts

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
The Algorithm				
Decreasin	n Profit as I	ess as We Ca	an	

Removing Bad Ones (Balancing)

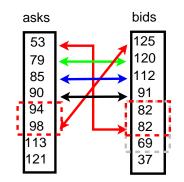
Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				

Cross-Match Matchable Shouts

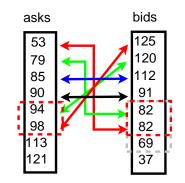

Question

How to match extra matchable ones?

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
Cross-Ma	atch Matchat	ole Shouts		

Final Extra Matchable Shouts

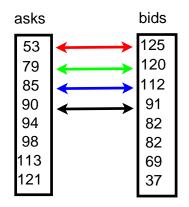

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
Cross-M	latch Matchat	ble Shouts		

Cross-Matching

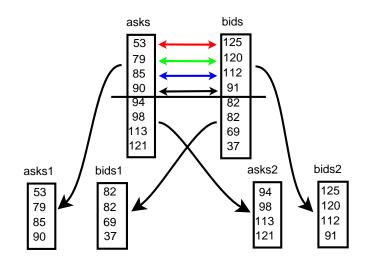
Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
Cross-M	latch Matchat	ble Shouts		

Cross-Matching

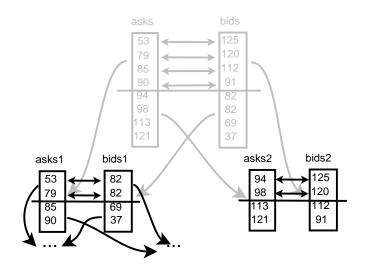
Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
The Algo	orithm			

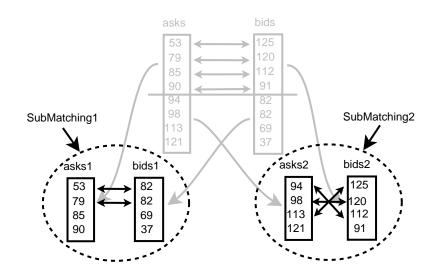

Algorithm 3.1: MaximalMatching

- *Matching* ← EquilibriumMatching(*Asks*, *Bids*);
- 2 MatchedAsks ← all asks from Matching in ascending order;
- *MatchedBids* ← all bids from *Matching* in descending order;
- *MM*1 ← MaximalMatching(*MatchedAsks*, (*Bids* \ *MatchedBids*));
- $MM2 \leftarrow MaximalMatching((Asks \setminus MatchedAsks), MatchedBids);$

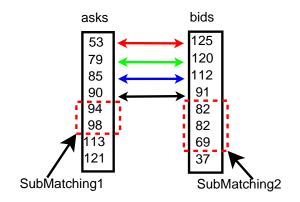

- *NumberOfExtraMatchableMatches* ← *Min*(|*MM*1|, |*MM*2|);
- 7 Cross-match extra matchable asks and bids;

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
The Algo	orithm			

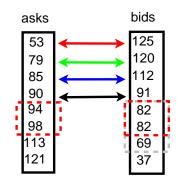

Equilibrium Matching


Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
The Alg	orithm			

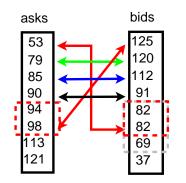
Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
The Alg	orithm			



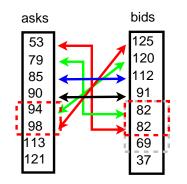
Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
The Algo	orithm			


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
The Alg	orithm			



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・


Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
The Algorithm				
The Alg	orithm			

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
The Alg	orithm			

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
The Algorithm				
The Alg	orithm			

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
The Algorithm				
Complexity	y of Maximal I	Matching		

Worst case performance:

• $O(\max(n_a, n_b) \log \max(n_a, n_b) + \min(n_a, n_b)^2)$, where n_a (n_b) is the number of asks (bids).

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Properties of Maxin	nal Matching			
The Mai	n Result			

Maximizing Trasactions: Given a set of shouts, the size of maximal matching is maximal.

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Properties of Maximal	Matching			
The Main	Result			

Maximizing Trasactions: Given a set of shouts, the size of maximal matching is maximal.

Sketch proof.

- Induction:
 - assume the two sub-matchings are maximal
 - then the parent matching is also maximal

2 Base:

• no bid's price \geq any ask's price

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Properties of Maxin	nal Matching			
The Mai	n Result			

Maximizing Trasactions: Given a set of shouts, the size of maximal matching is maximal.

Theorem

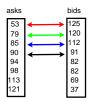
Maximizing Sell-Volume/Profit: Given a set of shouts, maximal matching maximizes buy-volume and minimizes sell-volume. Auctioneer's profit is maximal among all matchings with the same size.

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Properties of Maxin	nal Matching			
The Mai	n Result			

Maximizing Trasactions: Given a set of shouts, the size of maximal matching is maximal.

Theorem

Maximizing Sell-Volume/Profit: Given a set of shouts, maximal matching maximizes buy-volume and minimizes sell-volume. Auctioneer's profit is maximal among all matchings with the same size.

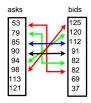

Proof.

Because of the descending (ascending) order of bids (asks), and maximal matching always matches the first n biggest (smallest) bids (asks), where n is the size of the matching.

	Conclusion
0000000000	

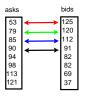
Properties of Maximal Matching

Equilibrium Matching vs Maximal Matching



Equilibrium Matching

- profit maximizing (141)
- market liquidity can be improved
 - transactions: 4
 - buy/sell-volume: 448/307


Maximal Matching

- profit maximizing (conditional) (113)
- market liquidity maximizing
 - transactions: 6
 - 2 buy/sell-volume: 612/499

Background	Existing Matching	Maximal Matching ○○○○○○○○●○	Experiments 0000	Conclusion
Properties of Maximal M	Matching			
Maximal N	Matching is R	eally Nice?		

From economic point of view:

Equilibrium Matching

- either *incentive compatible*
- or efficient
- oprofit maximizing

Maximal Matching

- not incentive compatible
- Inot efficient
- less profit

Backgr	ound	

Existing Matching

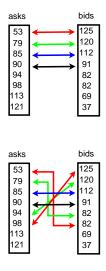
Maximal Matching

Experiments

Conclusion

Properties of Maximal Matching

Empirical Findings in the Long Term


Question

Can a stock market owner improve market liquidity to get more traders and more profit?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ●

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
Properties of Maximal M	atching			

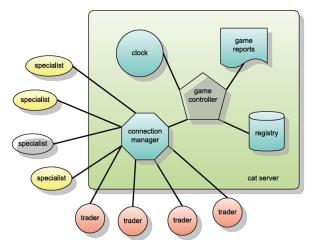
Empirical Findings in the Long Term

Equilibrium Matching

- less traders
- less profit
- **Maximal Matching**
 - more traders

e more profit

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Outline				


- 2 Existing Matching
- 3 Maximal Matching

Background	Existing Matching	Maximal Matching	Experiments ••••	Conclusion
Settings				
Test Platf	orm			

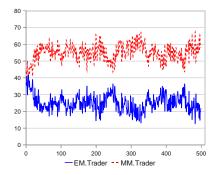
Trading-Agent Competition Market Design (CAT)

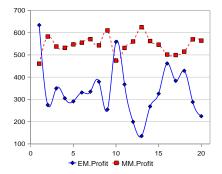
◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Settings				
Test Sett	ings			

Markets:

- EM: with equilibrium matching
- MM: with maximal matching


Traders:


- 80 (40 sellers and 40 buyers) with profit seeking strategies
- they can only submit offers to sell or buy one goods
- not allowed to have more than one offer at the same time

Others:

- 500 virtual days, 10 rounds in each day
- each trader only chooses one market to trade in each day
- each trader has a fixed number of goods, say 3, to trade in each day

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Results				
Experim	ental Results			

Trader Distribution

Auctioneer's Profit (avg/25ds)

(日)

= 990

-

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Results				
Our CAT	Specialist: <i>ja</i>	ickaroo		

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

jackaroo achievements (leader: Dongmo Zhang, UWS):

- CAT 2007: 4th
- CAT 2008: 3rd
- CAT 2009: Champion
- CAT 2010: 2nd

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Outline				

Background

- 2 Existing Matching
- 3 Maximal Matching

4 Experiments

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
Summary				

Matching for Double Auction

- Equilibrium Matching
- Maximal Matching
 - maximizes market liquidity
 - maximizes profit (conditional)
 - empirical findings
 - attracting traders
 - increasing profit

Further research directions:

- Online Double Auction, i.e. adding temporal information,
 - e.g. a sell offer would look like...
 "I want to sell a house only between Jan 2011 and March 2011."

Background	Existing Matching	Maximal Matching	Experiments 0000	Conclusion
Acknowle	edgments			

- **People**: Dongmo Zhang, Laurent Perrussel, Md Khan, *jackaroo* team, and anonymous reviewers.
- **Funding**: the Australian Research Council Discovery Project DP0988750.

Background	Existing Matching	Maximal Matching	Experiments	Conclusion
Acknow	ledgments			

- **People**: Dongmo Zhang, Laurent Perrussel, Md Khan, *jackaroo* team, and anonymous reviewers.
- **Funding**: the Australian Research Council Discovery Project DP0988750.

Thank you for your attention!

Outline

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Complexities

Worst case performance:

- Maximal Matching:
 - $O(\max(n_a, n_b) \log \max(n_a, n_b) + \min(n_a, n_b)^2)$, where n_a (n_b) is the number of asks (bids).
- the Hopcroft-Karp algorithm:
 - O(|E|√n_a + n_b), where |E| ≥ (n_{em})², n_{em} is the size of equilibrium matching in our model.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

- Online Mechanism Design
 - Motivation
 - Online Mechanism Design Examples

Motivation

Why Online?

Mechanism Design has focused on static settings where

- no uncertainty,
- the participants are known and independent,
- (mostly) only one decision to make.

But many real environments are dynamic in the sense of that

- the number of participants is changing,
- the private information of participants is changing.

Examples

- stock exchanges.
- peer-to-peer file sharing (e.g. BitTorrent).
- allocating computational resources (e.g. CPU time) to jobs arriving over time.

Motivation

Why Online?

Mechanism Design has focused on static settings where

- no uncertainty,
- the participants are known and independent,
- (mostly) only one decision to make.

But many real environments are dynamic in the sense of that

- the number of participants is changing,
- the private information of participants is changing.

Examples

- stock exchanges.
- peer-to-peer file sharing (e.g. BitTorrent).
- allocating computational resources (e.g. CPU time) to jobs arriving over time.

Motivation

Why Online?

Mechanism Design has focused on static settings where

- no uncertainty,
- the participants are known and independent,
- (mostly) only one decision to make.

But many real environments are dynamic in the sense of that

- the number of participants is changing,
- the private information of participants is changing.

Examples

- stock exchanges.
- peer-to-peer file sharing (e.g. BitTorrent).
- allocating computational resources (e.g. CPU time) to jobs arriving over time.

Online Mechanism Design Examples

Example I (Dynamic Buyers)

Online Vickrey Auction

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

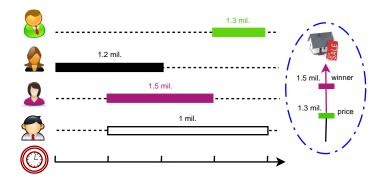
 (1)

 (1)

 (1)

 (1)

Online Mechanism Design Examples


Example I (Dynamic Buyers)

Vickrey Auction (second-price sealed-bid)

Example I (Dynamic Buyers)

Online Vickrey Auction

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

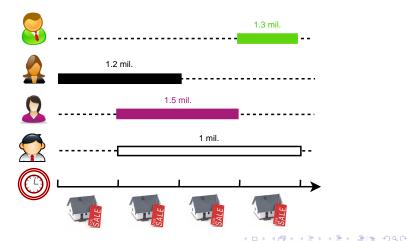
 (1)

 (1)

 (1)

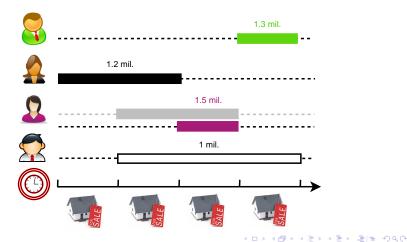
 (1)

 (1)


Online Mechanism Design Examples

Example II (Dynamic Buyers)

Selling many identical houses (goods) in different time


Example II (Dynamic Buyers)

Selling many identical houses (goods) in different time

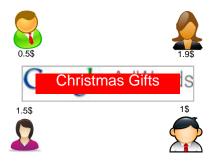
Example II (Dynamic Buyers)

Selling many identical houses (goods) in different time

Online Mechanism Design Examples

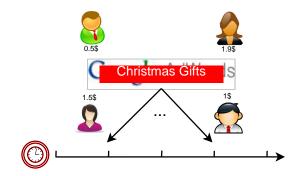
Example III (Dynamic Seller)

Ad Auction


Complexities

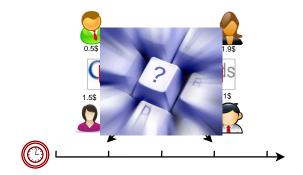
Online Mechanism Design

Online Mechanism Design Examples


Example III (Dynamic Seller)

Ad Auction: buyers bid for "Keyword"

Example III (Dynamic Seller)


Ad Auction: dynamic arrival of "Keyword"

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example III (Dynamic Seller)

Ad Auction: how many "Keyword" will arrive?

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

Online Mechanism Design Examples

Example IV (Dynamic Sellers and Buyers)

Exchanges: stock, currency, futures...

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

Online Mechanism Design Examples

Example IV (Dynamic Sellers and Buyers)

Exchanges: stock, currency, futures...

Double Auction

Online Mechanism Design Examples

Example IV (Dynamic Sellers and Buyers)

Exchanges: stock, currency, futures...

Online Double Auction

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Online Mechanism Design Examples

Summary

- Dynamics from buyers
 - online Vickrey auction (one goods to sell)
 - many goods to sell in a fixed schedule
- Dynamics from sellers
 - Ad auctions
- Dynamics from both
 - online double auction (exchanges)

Complexities

Online Mechanism Design

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Online Mechanism Design Examples

- dynamics provide new strategies for participants
- solutions of static mechanism design are insufficient

Online Mechanism Design Examples

Static vs Online Mechanism Design

- (Static) Mechanism Design
 - well studied since 60s
 - got many nice results (e.g. Vickery auctions)
- Online Mechanism Design
 - just addressed (since 2000)
 - many real environments are dynamic, e.g. exchanges
 - new challenges (uncertainties of future)

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

Online Mechanism Design Examples

What We Bring?

Economists:

- incentive constraint
- Computer Scientists:
 - computational constraint