The	Model
000	

1/23

Incentives in Ridesharing with Deficit Control

Dengji Zhao^{1,3} Dongmo Zhang² Enrico Gerding¹ Yuko Sakurai³ Makoto Yokoo³

¹University of Southampton, UK ²University of Western Sydney, Australia ³Kyushu University, Japan

VCG with Reserve Prices

Conclusion

Ridesharing Example

The Model

Fixed-price Mechanisms

VCG with Reserve Prices

Conclusion

Ridesharing Example

VCG with Reserve Prices

Conclusion

Ridesharing Example

VCG with Reserve Prices

Conclusion

2/23

Ridesharing Example

Questions:

- How to arrange the sharing?
- How much should they pay/receive?

The	Μ	0	d	le

History

- Began in the 1940s in North America
- Been promoted because of
 - fuel shortages, air pollution and traffic congestion
- Peaked in the US in 1970 with a commute mode share of 20.4%

VCG with Reserve Prices

Conclusion

Public and Private Promotions

VCG with Reserve Prices

Conclusion

People are still NOT well motivated!

not going well...

- Australia (Queensland) will end ridesharing lanes
- The average car carries just 1.6 people

The	Μ	d	е	
000				

VCG with Reserve Prices

Conclusion

What are the obstacles?

- Safety and Privacy
- Flexibility and Reliability
- ...

VCG with Reserve Prices

What are the obstacles?

- Safety and Privacy
- Flexibility and Reliability
- ...
- Complicated join procedures
- No free market competition!

What we car	n do?	

Use Mechanism Design to build ridesharing:

- Automated ride matching
- Automated (profitable) price setting

The Model	Fixed-price Mechanisms	VCG with Reserve Prices	Conclusion
What we ca	in do?		

Use Mechanism Design to build ridesharing:

- Automated ride matching
- Automated (profitable) price setting

to answer...

Questions:

- How to arrange the sharing?
- How much should they pay/receive?

The Model	Fixed-price Mechanisms	VCG with Reserve Prices	Conclusion 00
Outline			

- Pixed-price Mechanisms
- 3 VCG with Reserve Prices

The Model	Fixed-price Mechanisms	VCG with Reserve Prices	Conclusion
Outline			

- Auction-based Ridesharing
- Pixed-price Mechanisms
- 3 VCG with Reserve Prices
- 4 Conclusion

System Ove	erview		
Auction-based Ridesharing			
The Model ●○○○	Fixed-price Mechanisms	VCG with Reserve Prices	Conclusion

The Model ●000	Fixed-price Mechanisms	VCG with Reserve Prices	Conclusion 00	
Auction-based Ridesha	aring			
System C	System Overview			

- Route map: a graph G = (L, E),
 - L: stopping points/locations,
 - E: routes between stopping points,
 - w(e): time required to travel via route $e \in E$.
- *i*'s trip type: $\theta_i = (I_i^d, I_i^a, t_i^d, t_i^a, c_i, q_i)$
 - $I_i^d, I_i^a \in L$: departure and arrival locations,
 - t_i^d , t_i^a : earliest departure and latest arrival time,
 - $c_i \in \mathbb{R}^+$: travel cost to finish the trip,
 - $q_i \in \mathbb{N}$: extra seats available on the trip.

System Ove	rview		
Auction-based Ridesharing			
The Model ●○○○	Fixed-price Mechanisms	VCG with Reserve Prices	Conclusion

- Allocation/Scheduling:
 - driver: drives and takes riders
 - rider: shares with drivers
 - unmatched: goes with his original preference
- Payments:
 - driver: receives money
 - rider: pays money
 - unmatched: no payment

The Model ⊙●○○	Fixed-price Mechanisms	VCG with Reserve Prices	Conclusion
Auction-based Ridesharing			
The Goal of	the System		

- Minimize the total travel costs (efficiency)
- Incentivize participation and against manipulations
 - Agents never receive negative utility (individual rationality)
 - Truthfully report their trip information is a dominant strategy (truthfulness)
- Control deficit (budget balance)
 - The system owner should not lose too much money

The	Model
000	0

VCG with Reserve Prices

Conclusion

Auction-based Ridesharing

Solution: Applying VCG Mechanism

- Efficient (cost minimizing)
- Individually rational
- Truthful
- High deficit (*m* times of the cost saved!)

The Model	Fixed-price Mechanisms	VCG
0000		

VCG with Reserve Prices

Conclusion

Auction-based Ridesharing

Solution: Applying VCG Mechanism

- Efficient (cost minimizing)
- Individually rational
- Truthful
- High deficit (m times of the cost saved!)

The	Model
000	0

VCG with Reserve Prices

Conclusion

Auction-based Ridesharing

Solution: Applying VCG Mechanism

- Efficient (cost minimizing)
- Individually rational
- Truthful
- High deficit (*m* times of the cost saved!)

Question

How to control deficit?

The	Model
000	•

VCG with Reserve Prices

Auction-based Ridesharing

Our Solutions (Overview)

We propose...

Fixed-price Mechanisms :

- Flexible deficit control (outperforms VCG)
- Truthful and individually rational
- Very inefficient

VCG with Reserve Prices :

- Flexible deficit control (outperforms VCG)
- (Partially) truthful and individually rational
- Flexible efficiency control

The Model	Fixed-price Mechanisms	VCG with Reserve Prices	Conclusion
Outline			

3 VCG with Reserve Prices

4 Conclusion

The Model	Fixed-price Mechanisms ●oo	VCG with Reserve Prices	Conclusion
$x^{fixed}(p^0, p^1)$			
Fixed Payn	nents $x^{fixed}(p^0, p)$	1)	

Given predefined values $p^0 \ge 0$ (for riders) and $p^1 \le 0$ (for drivers), fixed payments are defined

(a) < (a) < (b) < (b)

- Allocation independent
- Allocation dependent
 - location dependent (shortest path)
 - detour dependent
 - sharing dependent
 - ...

The	Model
000	

VCG with Reserve Prices

$x^{fixed}(p^0, p^1)$

Dictatorship Mechanism

Serial Dictatorship Mechanism with fixed payments

- Predefine the set of (potential) drivers and riders
- Order potential drivers and riders
- Maximize drivers' utility according to the order
- Each driver/rider gets the fixed payment

Properties

- truthful and individually rational
- better deficit control than VCG
- very inefficient

The Model 0000 $x^{fixed}(p^0, p^1)$ Fixed-price Mechanisms

VCG with Reserve Prices

Conclusion

Problems of Non-dictatorship Mechanisms

Case I:

- fixedPay = 10
- both prefer drive
- potential problem for deterministic mechanisms

Case II:

- fixedPay = 1
- both prefer ride
- potential problem for all mechanisms

The Model	Fixed-price Mechanisms	VCG with Reserve Prices	Conclusion
Outline			

4 Conclusion

The Model	Fixed-price Mechanisms	VCG with Reserve Prices ●○	Conclusion
$\mathcal{M}^{VCG}(r^0, r^1)$			

VCG with Two-Sided Reserve Prices $\mathcal{M}^{VCG}(r^0, r^1)$

Predefined reserve prices $r^0 \ge 0$ (for riders) and $r^1 \le 0$ (for drivers),

Note: r_0 and r_1 can be allocation dependent.

The Model

Fixed-price Mechanisms

VCG with Reserve Prices ○● Conclusion

 $\mathcal{M}^{VCG}(r^0, r^1)$

Properties of $\mathcal{M}^{VCG}(r^0, r^1)$

$$\mathcal{M}^{\textit{VCG}}(r^0,r^1)$$
 is

- truthful iff $r^0 \ge -r^1$. Otherwise, the manipulation gain is bounded (max $(-r^1 r^0, \delta_i^{max}(-r^1 r^0))$).
- weakly budget balanced without detour. Otherwise, deficit is bounded $(-n_d \delta^{max} r^1 - n_r r^0)$.
- more efficient as $r^0 + r^1$ decreases.

The Model	Fixed-price Mechanisms	VCG with Reserve Prices	Conclusion
Outline			

- 2 Fixed-price Mechanisms
- 3 VCG with Reserve Prices
- Conclusion
 Done and ToDo

The Model	Fixed-price Mechanisms	VCG with Reserve Prices	Conclusion ●○
Done and ToDo			
What is N	IEW?		

- The first comprehensive ridesharing model studied from a pure game-theoretic point of view.
- Auction-based ridesharing system incentivizing participation.
- Flexible deficit control rather than completely remove deficit.

oooo Done and ToDo	000	00	0•
Future Work	(

- Tradeoff between deficit and efficiency (theoretically or simulations).
- The problem of finding optimal schedules is computationally hard (optimal in range).
- Allow agents to submit trips dynamically over time (online mechanism design).