## Selling Multiple Items via Social Networks

#### Dengji Zhao<sup>1</sup>, Bin Li<sup>2</sup>, Junping Xu<sup>1</sup> Dong Hao<sup>2</sup>, Nick Jennings<sup>3</sup>

<sup>1</sup>ShanghaiTech University, China <sup>2</sup>University of Electronic Science and Technology of China, China <sup>3</sup>Imperial College London, UK

#### AAMAS'18

・ロット (雪) (ヨ) (ヨ)

## Starter: Promote a Sale in Social Networks



- The seller (blue node) sells one item and has only three connections in the network (A,B,C).
- Each node is a potential buyer and the value is her highest willing payment to buy the item (valuation).
- Profit of applying second price auction without promotion is 2.
- but the highest willing payment of the network is 13.

## Traditional Sale Promotions

Traditional sale promotions:

- Promotions in shopping centres
- Keywords based ads via search engines such as Google
- Ads via social media such as WeChat, Facebook, Twitter

## Traditional Sale Promotions

Traditional sale promotions:

- Promotions in shopping centres
- Keywords based ads via search engines such as Google
- Ads via social media such as WeChat, Facebook, Twitter

#### Challenge

- The return of these promotions are unpredictable.
- The seller may LOSE from the promotions.

## Tackle the Challenge

Build promotion inside the market mechanism such that

- the promotion will never bring negative utility/revenue to the seller.
- all buyers who are aware of the sale are incentivized to diffuse the sale information to all her neighbours.

"Diffusion Mechanism Design"

## The Challenge

Why a buyer would bring more buyers to compete with her?

Only if their efforts are rewarded!



What is Mechanism Design

## What is Mechanism/Market Design?

• it is known as Reverse Game Theory

# A Simple Mechanism Design Example

# **Design Goal**

How can a house-seller sell her house with the "highest" profit?

#### **Design Goal**

How can a house-seller sell her house with the "highest" profit?



• Challenge: the seller doesn't know how much the buyers are willing to pay (their valuations).

#### **Design Goal**

#### How can a house-seller sell her house with the "highest" profit?



Solution: Second Price Auction (Vickrey Auction/VCG)

- Input: each buyer reports a price/bid to the seller
- Output: the seller decides
  - allocation: the agent with the highest price wins.
  - payment: the winner pays the second highest price.

#### **Design Goal**

How can a house-seller sell her house with the "highest" profit?



Solution: Second Price Auction (Vickrey Auction/VCG)

#### Properties:

- Efficient: maximising social welfare
- Truthful: buyers report their willing payments truthfully

### Is this the BEST the seller can do?

#### Question

What can the seller do to FURTHER increase her profit?

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 の 9 (で 8/29

## Is this the BEST the seller can do?

#### Question

What can the seller do to FURTHER increase her profit?

- estimate a good reserve price [Myerson 1981]
  - requires a good estimation of buyers' valuations
- promotions: let more people know/participate in the auction

## Is this the BEST the seller can do?

#### Question

What can the seller do to FURTHER increase her profit?

- estimate a good reserve price [Myerson 1981]
- promotions: let more people know/participate in the auction

# **Our Solutions**

## Information Diffusion Mechanisms

- Dengji Zhao, Bin Li, Junping Xu, Dong Hao, Nick Jennings: Selling Multiple Items via Social Networks. AAMAS'18.
- Bin Li, Dong Hao, Dengji Zhao, Tao Zhou: Mechanism Design in Social Networks. AAAI'17.
- Bin Li, Dong Hao, Dengji Zhao, Tao Zhou: Customer Sharing in Economic Networks with Costs. IJCAI-ECAI'18.

#### Information Diffusion Paths

An information diffusion path from the seller to node L:  $s \rightarrow C \rightarrow I \rightarrow L$ 



(a)

#### Information Diffusion Paths

An information diffusion path from the seller to node L:  $s \rightarrow C \rightarrow I \rightarrow L$ 



## **Diffusion Critical Nodes**



#### Definition

*i* is *j*'s diffusion critical node if all the information diffusion paths started from the seller *s* to *j* have to pass *i*.

 nodes C and I are L's only diffusion critical nodes.

### The Information Diffusion Mechanism

The **payment** definition (second-price-like):

- If a buyer or one of her "diffusion critical children" gets the item, then the buyer pays the highest bid of the others (without the buyer's participation);
- otherwise, her payment is zero.



## The Information Diffusion Mechanism

The **payment** definition (second-price-like):

- If a buyer or one of her "diffusion critical children" gets the item, then the buyer pays the highest bid of the others (without the buyer's participation);
- otherwise, her payment is zero.



If the item is allocated to *L*, the payments of C, I and L are 10, 11, 12 respectively .....

# The Information Diffusion Mechanism [Li et al. AAAI'17]

The allocation definition:

- Identify the node *i* with the highest bid and the node's diffusion critical node path  $P_{c_i} = (c_i^1, c_i^2, ..., i)$ .
- Give the item to the first node of P<sub>ci</sub>, the node pays to the seller and then decides to whether keep the item or pass it to the next node in P<sub>ci</sub>:
  - If the payment of the next node is greater than the bid of the current node, passes it to the next node and receives the payment from the next node; the next node makes a similar decision;
  - otherwise, keep the item.

## The Information Diffusion Mechanism

The outcome of the Information Diffusion Mechanism:

- the item is allocated to node I.
- node I pays 11 to C, C pays 10 to the seller.
- the utilities of I, C, the seller are 1, 1, 10.



# Why Buyers are Happy to Diffuse the Information?

- buyers receive the information earlier have higher priority to win the item (*C* chooses before *I* and *I* chooses before *L*).
- diffuse the information to more buyers will potentially increase their reward (if C does not invite H, her utility is 0).



## Properties of the Information Diffusion Mechanism



- Truthful: report true valuation and diffuse the sale information to all her neighbours is a dominate strategy.
- Individually Rational: no buyer will receive a negative utility to join the mechanism.
- Seller's Revenue Improved: the seller's revenue is non-negative and is ≥ that of the VCG without diffusion.

# What Next?

- Diffusion mechanisms for combinatorial exchanges
- Diffusion with costs and delays
- Network structure based revenue analysis
- Applications/implementations in the existing social networks
- Other mechanisms to further improve the revenue and/or the efficiency

#### Challenge

How to generalise the mechanism to combinatorial settings?

 ・・・< 部・< 言・< 言・ 言・のへで 18/29

Consider the following simple setting:

- A seller sells three units of one commodity, e.g. MacBook computers.
- Each buyer has a diminishing marginal utility for consuming the goods.

Consider the following simple setting:

- A seller sells three units of one commodity, e.g. MacBook computers.
- Each buyer has a diminishing marginal utility for consuming the goods.





<ロ> < (回)、< (回)、< (回)、< (回)、< (回)、< (回)、< (回)、</p>





#### Challenge



<sup>18/29</sup> 

# Why is it so complex when there are multiple items?

To achieve truthfulness:

- The mechanism has to maximise each node's utility under truthful reporting/diffusing.
- Each node's payment should not depend on her valuation.

The complexity issue we had:

- A node can influence her received payments by controlling the items passed to her children.
- A node can influence the payments of her peers, without changing her own allocation and payments.
- This leads to a decision loop (very complex optimization) and may not able to maximise everyone's utility.

# Reduce the Complexity

#### The Main Idea

A node CANNOT influence the payments she receives by controlling the items passed to her children.

Simplify the decision complexity we had:

- A node can influence her received payments by controlling the items passed to her children.
- A node can influence the payments of her peers, without changing her own allocation and payments.
- This leads to a decision loop and may not able to maximise everyone's utility.

# Solution Example: Sells Multiple Homogeneous Items

*Selling Multiple Items via Social Networks* [Zhao et al. AAMAS'18]

- generalised the result from [Li et al. 2017];
- agent i's reward/payment doesn't depends on how many of i's children received items;
- agent pays to the seller directly rather than to their parent;

## The Generalised Setting

- A seller sells  $\mathcal{K} \ge 1$  homogeneous items;
- each buyer requires at most one item (single-unit demand);
- the rest is the same as [Li et al. 2017].

#### The Generalised Diffusion Mechanism



◆□ ▶ < ⑦ ▶ < ミ ▶ < ミ ▶ ミ の Q () 23/29

#### The Generalised Diffusion Mechanism







#### The Generalised Diffusion Mechanism



# The Allocation Policy of the Generalisation

Node/buyer i receives one item if and only if

- the top  $\mathcal{K}$ -highest valued children of *i* (and their parents, who are also *i*'s children) do not participate
- and *i* wins under the efficient allocation with their absence given that all *i*'s (critical) parents' allocation is determined and fixed.

# The Payment Policy of the Generalisation

Node *i*'s utility is the social welfare difference of the efficient allocation between

the top *K*-highest valued children of *i* (and their parents, who are also *i*'s children) do not participate (guarantees that *i*'s payment does not depend on how many items *i*'s children get)

and *i* (and all her children) does not participate
 Formally, *i*'s payment is:

$$\begin{cases} \mathcal{SW}_{-D_i} - (\mathcal{SW}_{-\mathcal{C}_i^{\mathcal{K}}} - v'_i) & \text{if } i \in W, \\ \mathcal{SW}_{-D_i} - \mathcal{SW}_{-\mathcal{C}_i^{\mathcal{K}}} & \text{if } i \in \bigcup_{j \in W} \mathcal{P}_j(\theta') \setminus W, \\ 0 & \text{otherwise.} \end{cases}$$

where W is the set of nodes each of whom received one item.

### Properties of the Generalisation

- Truthful: report true valuation and diffuse the sale information to all her neighbours is a dominate strategy for each node.
- Individually Rational: no node will receive a negative utility to join the mechanism.
- Seller's Revenue Improved: the seller's revenue is non-negative and is ≥ that of the VCG without diffusion.

## Truthfulness and IR

Given *i*'s payment:

$$\begin{cases} \mathcal{SW}_{-D_i} - (\mathcal{SW}_{-\mathcal{C}_i^{\mathcal{K}}} - v'_i) & \text{if } i \in W, \\ \mathcal{SW}_{-D_i} - \mathcal{SW}_{-\mathcal{C}_i^{\mathcal{K}}} & \text{if } i \in \bigcup_{j \in W} \mathcal{P}_j(\theta') \setminus W, \\ 0 & \text{otherwise.} \end{cases}$$

if *i* reports truthfully, *i*'s utility is:

 $\mathcal{SW}_{-\mathcal{C}_{i}^{\mathcal{K}}} - \mathcal{SW}_{-\mathcal{D}_{i}}$ 

- SW<sub>-D<sub>i</sub></sub> is the optimal social welfare without i's participation
- SW<sub>-C<sup>k</sup></sub> is the optimal social welfare when the top
   K-highest valued children of *i* (and their parents, who are also *i*'s children) do not participate





<ロ><部</p>
<ロ><部</p>
<10</p>
<1

$$\mathcal{SW}_{-\mathcal{C}_{i}^{\mathcal{K}}} - \mathcal{V}_{\mathcal{N}_{i}^{ ext{still}}} \leq \sum_{i_{l}} (\mathcal{SW}_{-\mathcal{D}_{i_{l}}} - \mathcal{V}_{\mathcal{N}_{i_{l}}^{ ext{still}}})$$

<ロ> < 部> < き> < き> < き> こ 28/29



#### Theorem

The revenue of the generalised information diffusion mechanism is greater than or equal to  $\mathcal{K} \times v_{\mathcal{K}+1}$ , where  $v_{\mathcal{K}+1}$  is the  $(\mathcal{K} + 1)$ -th largest valuation report among  $r_s$ , assume that  $|r_s| > \mathcal{K}$ .

## More Details

Get Confused?!

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 29/29

# More Details

- Tutorial on 14th Morning (8:30-10:00, K11): Dengji Zhao, T26: Diffusion Mechanism Design in Social Networks.
- IJCAI, 18th 8:30-9:45: Customer Sharing in Economic Networks with Costs. [Zhao et al. IJCAI-ECAI'18]

References:

- Dengji Zhao, Bin Li, Junping Xu, Dong Hao, Nick Jennings: Selling Multiple Items via Social Networks. AAMAS'18.
- Bin Li, Dong Hao, Dengji Zhao, Tao Zhou: *Mechanism Design in Social Networks*. AAAI'17.
- Bin Li, Dong Hao, Dengji Zhao, Tao Zhou: Customer Sharing in Economic Networks with Costs. IJCAI-ECAI'18.