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ABSTRACT
We study cooperative games where players join sequentially, and

the value generated by those who have joined at any point must be

irrevocably divided among these players. We introduce two desider-

ata for the value division mechanism: that the players should have

incentives to join as early as possible, and that the division should

be considered fair. For the latter, we require that each player’s ex-

pected share in the mechanism should equal her Shapley value if

the players’ arrival order is uniformly at random.

When the value generation function is submodular, allocating

the marginal value to the player satisfies these properties. This

is no longer true for more general functions. Our main technical

contribution is a complete characterization of 0-1 value games for

which desired mechanisms exist. We show that a natural mecha-

nism, Rewarding First Critical Player (RFC), is complete, in that a

0-1 value function admits a mechanism with the properties above if

and only if RFC satisfies them; we analytically characterize all such

value functions. Moreover, we give an algorithm that decomposes,

in an online fashion, any value function into 0-1 value functions, on

each of which RFC can be run. In this way, we design an extension

of RFC for general monotone games, and the properties are proved

to be maintained.

KEYWORDS
Cooperative Games; Early Arrival; Online Mechanisms

ACM Reference Format:
Yaoxin Ge, Yao Zhang, Dengji Zhao, Zhihao Gavin Tang, Hu Fu, and Pinyan

Lu. 2024. Incentives for Early Arrival in Cooperative Games. In Proc. of the
23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION
Consider a frequent scenario, where a group of people form a part-

nership for a startup [20]. They have different abilities or funds to

contribute and can cooperate to create values. Sharing the value

created is a classic problem studied in the literature on cooperative

games [3, 8, 19, 23]. Traditional cooperative games distribute the

value after the whole coalition is formed. However, in reality, peo-

ple typically do not all arrive at one point of time; rather, they join

sequentially. This creates two issues: first, it is often not realistic to

wait until everyone arrives before distributing the value — some-

times, it is not even clear if “everyone” has joined. This requires

that values be distributed in an online manner. Second, the time to

join can be strategic for a player; for example, a fund may choose

the best time to invest in a startup.

In this work, we propose a theory for online cooperative games

that explicitly addresses these issues. Firstly, we require that, after

each player joins, an irrevocable distribution of the value created

so far should be immediately determined. We formalize a property

called online individually rational to guarantee that players’ shares

be non-negative and non-decreasing as new players join, so that all

are willing to participate till the end. Secondly, to gather resources

quickly, and to prevent players from waiting indefinitely for each

other to join first, we require a share-dividing mechanism to incen-
tivize players to join the game as early as possible. Namely, we require

the mechanism to distribute a higher reward to a player when she

joins earlier (when the order of the others’ arrivals remains fixed).

We believe this is a critical property of an online value-sharing

mechanism, which has not been discussed in the literature so far.

Incentivizing early arrival is the key property we proposed here,

which also has promising applications. For example, considering

a group of students working on a hard project which requires

different combinations of skills to finish it, the supervisor may

want to incentivize the students to join the project as early as

possible so that the project can be finished earlier. Again for a

startup to quickly get enough funds, they should design a proper

reward sharing mechanism to incentivize investors to invest the

startup as early as possible.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


One may notice that there exist trivial online methods to in-

centivize early arrivals of players. For example, one may simply

always give all the value to the first player in the game. However,

such a solution is not fair (e.g., the first player may make no con-

tribution to the value at all). Hence, we use the Shapley value [19],

a well-known and widely accepted classic solution to traditional

cooperative game, as a benchmark for fairness [6]. More precisely,

we require every player’s expected reward over all possible joining

orders to be exactly her Shapley value in the game, which is referred

to as Shapley-fair in our setting.

Taking everything together, our contributions are summarized

as follows.

• We formalize the requirements mentioned above. We check

two trivial ideas, including allocating the Shapley Value to

the players and allocating the marginal contribution to the

players, and show the limitations of them.

• For 0-1 monotone games, we propose a mechanism called

Reward First Critical Player (RFC), and show it to be complete.
Namely, we analytically characterize the set of games where

RFC satisfies all the requirements, and show that any other

game does not admit a mechanism with all the properties.

• We extend the method for 0-1 monotone cooperative games

to deal with general games. The key idea is to decompose

such a game into 0-1 monotone games in an online fashion.

Properties of RFC are then extended to general games.

The remainder of the paper is organized as follows. Section 2

introduces the related work and Section 3 gives the concrete model

of the problem we study. We then characterize the solution in 0-1

monotone games and a corollary of impossibility results in Section 4.

Furthermore, we extend the solution to general games in Section 5.

Finally, we discuss future investigations.

2 RELATEDWORK
Classic Cooperative Games
Investigation on classic cooperative games can be traced back to

the last century [17, 23]. One of the main goals of these studies is

to discuss which value distribution should be taken with a consid-

eration of a set of axioms. This was initiated by Shapley value [19],

which is the foundation of almost all subsequent studies. For ex-

ample, in [25], the author characterized the monotone solutions

in cooperative games along with Shapley value, and in [12], the

author studied the associated consistency among series of games

with identical Shapley value. The more abundant investigations

can be found in many surveys or books [1, 7].

Different from the traditional research line, our work focuses

on the setting where the players can strategically control the time

of arrival to the cooperation. Therefore, our approach aligns more

closely with a mechanism design standpoint, as we develop a

method for distributing value that encourages arriving earlier.

Cooperative Games with Hierarchies
Many studies have already considered hierarchies or dynamics

among players in cooperative games. For example, cooperative

games were considered where only those coalitions of players

are feasible that respect a given precedence structure (denoting

the precedence of players’ joining order) or permission structures

(where players need others’ permission to work) on the set of play-

ers in [9, 11, 21, 22]. Moreover, generalized cooperative games,

where different order of joining players bring different value, were

considered in [18], and [28] considered this form and corresponding

solutions to cooperative games with precedence structures.

Themain difference of these studies from ours is that they treated

the players’ joining order or structural relationships as a constraint

on the value function of the cooperative game, while in our work,

a player’s joining time is under her manipulation and we expect

them to choose specific strategies (i.e., come as early as possible)

by designing a proper online value distribution mechanism.

Mechanism Design in Dynamic Settings
Our approach has a similar perspective with the online mechanism

design problem. For example, the auction mechanism design in

dynamic environments, where players with private valuations of

items will arrive or change over time was studied in [2, 15, 16].

Another interesting trend of designing mechanisms with dynamic

applications is diffusion incentives [13, 14, 26, 27]. They consid-

ered to incentivize the players to invite their neighbors in a social

network to join an auction or a collaboration. Furthermore, the

authors in [4, 10] investigate online coalition formation games. The

main objective of the study is to allocate the asynchronous joining

players to groups in a way that maximizes the overall social welfare.

We consider a different setting for cooperative games, where

players can control the time of arrival, and our goal of the mecha-

nism design is to guarantee that they are benefited for early arrival.

This has important applications to simulate swift collaborations.

Game Decomposition into 0-1 Valued Games
In this study, we use 0-1 monotone valued games as the base games

and decompose any game into 0-1 monotone valued games. Previ-

ous studies have suggested various foundations for the linear space

of transferable utility games, enabling each game to be represented

as a linear decomposition of 0-1 games [5, 24, 25]. We proposed a

novel decomposition in Section 5 which breaks down any mono-

tone game into a sum of 0-1 monotone games. More importantly, it

can be also executed online as each player joins. To the best of our

knowledge, this kind of decomposition has not been studied before.

3 THE MODEL
An online cooperative game is given by a triple (𝑁, 𝑣, 𝜋), where 𝑁
is a set of players, 𝑣 : 2

𝑁 → R+ is a set function, and 𝜋 ∈ Π(𝑁 ) is a
permutation of 𝑁 (Π(𝑁 ) denotes the set of all permutations of 𝑁 ).

Players arrive sequentially, in the order given by 𝜋 . A coalition is a

set 𝑆 ⊆ 𝑁 of players, who create a value 𝑣 (𝑆). 𝑣 (·) is normalized if

𝑣 (∅) = 0, and ismonotone if ∀𝑇 ⊆ 𝑆 ⊆ 𝑁 , 𝑣 (𝑆) ≥ 𝑣 (𝑇 ). Throughout
this work, we consider normalized and monotone games.

If a player 𝑖 arrives earlier than 𝑗 according to 𝜋 , we say 𝑖 ≺𝜋 𝑗 .

Let 𝑝𝜋 (𝑖) denote the set of players that arrive (weakly) before 𝑖 ,
including 𝑖: 𝑝𝜋 (𝑖) B { 𝑗 | 𝑗 ≺𝜋 𝑖} ∪ {𝑖}. For a subset 𝑆 ⊆ 𝑁 , 𝑣

restricted to 𝑆 , written as 𝑣 |𝑆 , is a set function 𝑣 |𝑆 : 2
𝑆 → R+ defined

as 𝑣 |𝑆 (𝑇 ) = 𝑣 (𝑇 ),∀𝑇 ⊆ 𝑆 ; 𝜋 restricted to 𝑆 , written as 𝜋 |𝑆 , is the
permutation of 𝑆 defined as 𝑖 ≺𝜋 |𝑆 𝑗 iff 𝑖 ≺𝜋 𝑗 , for all 𝑖, 𝑗 ∈ 𝑆 .



We look to divide the values in an online fashion as players

join; that is, at any point of time, when the set of players that have

arrived is 𝑆 , we should allocate irrevocably to players in 𝑆 all the

value created by 𝑆 , without the knowledge of 𝑣 or 𝜋 beyond the

scope of 𝑆 . We formalize this below.

Definition 3.1 (Prefix). A coalition 𝑆 ⊆ 𝑁 is a prefix of 𝜋 if 𝑆 is

the set of first |𝑆 | players to arrive according to 𝜋 . This is denoted

as 𝑆 ⊑ 𝜋 .

Definition 3.2 (Local Games). For a game (𝑁, 𝑣, 𝜋) and a prefix

𝑆 ⊑ 𝜋 , the local game on 𝑆 is the game (𝑆, 𝑣 |𝑆 , 𝜋 |𝑆 ).

Definition 3.3. A value-sharing policy 𝝓 maps a game (𝑁, 𝑣, 𝜋) to
an 𝑛-tuple of allocations, so that 𝜙𝑖 (𝑁, 𝑣, 𝜋) ≥ 0 is player 𝑖’s share

of the value, and

∑
𝑖 𝜙𝑖 (𝑁, 𝑣, 𝜋) = 𝑣 (𝑁 ).

An online value-sharing mechanism is given by a value-sharing

policy 𝝓, so that after the arrival of each prefix 𝑆 ⊑ 𝜋 , each player

𝑖 ∈ 𝑆 gets a (cumulated) share of 𝜙𝑖 (𝑆, 𝑣 |𝑆 , 𝜋 |𝑆 ).

When the context is clear, we often omit the first argument of a

policy 𝝓, and simply write 𝜙𝑖 (𝑣, 𝜋).
To keep the players from quitting early, we require each player’s

share to weakly increase as more players arrive:

Definition 3.4. An online mechanism is online individually ra-
tional (OIR) for value function 𝑣 if for any arrival order 𝜋 and any

𝑇, 𝑆 ⊑ 𝜋 with 𝑇 ⊆ 𝑆 , we have 𝜙𝑖 (𝑇, 𝑣 |𝑇 , 𝜋 |𝑇 ) ≤ 𝜙𝑖 (𝑆, 𝑣 |𝑆 , 𝜋 |𝑆 ) for
every player 𝑖 ∈ 𝑇 .

To prevent players from strategically delaying their arrivals, we

require each player’s share of value to be no larger if she chooses to

join later than her actual arrival, assuming the other players’ order

of arrivals is fixed. Formally,

Definition 3.5. An online mechanism is incentivizing for early
arrival (I4EA) if for any player 𝑖 , 𝜙𝑖 (𝑁, 𝑣, 𝜋) ≥ 𝜙𝑖 (𝑁, 𝑣, 𝜋 ′) for all 𝜋
and 𝜋 ′ such that 𝜋 |𝑁 \{𝑖 } = 𝜋 ′|𝑁 \{𝑖 } and 𝑝

𝜋 (𝑖) ⊊ 𝑝𝜋
′ (𝑖).

There are trivial mechanisms satisfying OIR and I4EA; consider,

e.g., allocating, at any stage, all the current value to the first player.

Such a mechanism, however, is easily seen to be unfair. One of the

most celebrated notions for fairness in (offline) cooperative games

is Shapley value (SV). Intuitively, the Shapley value for a player in

an offline games is defined by a mental experiment involving an

online game, where players arrive in an order that is uniformly at

random; each player’s expectedmarginal contribution in this mental

experiment is then her Shapley value. Now for the truly online

games that we study, it is natural to require that, in a mechanism

considered fair, a player’s expected share should equal her Shapley

value if the arrival order is uniformly at random. We now formalize

this discussion.

Definition 3.6 (Marginal Contribution). Given a value function 𝑣 ,

a player 𝑖’s marginal contribution (MC) to a coalition 𝑆 ∋ 𝑖 is
MC(𝑖, 𝑣, 𝑆) := 𝑣 (𝑆) − 𝑣 (𝑆 \ {𝑖}) .

Definition 3.7 (Shapley Value, [19]). Given a value function 𝑣 ,

player 𝑖’s Shapley Value (SV) is

SV𝑖 (𝑣) B
1

|𝑁 |!
∑︁

𝑆⊆𝑁 \{𝑖 }
|𝑆 |!( |𝑁 | − |𝑆 | − 1)! MC(𝑖, 𝑣, 𝑆 ∪ {𝑖});

Table 1: TheMC of𝐴, 𝐵,𝐶 in all joining orders in Example 3.9.

Order

1st

player

MC of

1st

2nd

player

MC of

2nd

3rd

player

MC of

3rd

A-B-C A 3 B 1 C 2

A-C-B A 3 C 2 B 1

B-A-C B 2 A 2 C 2

B-C-A B 2 C 1 A 3

C-A-B C 1 A 4 B 1

C-B-A C 1 B 2 A 3

equivalently,

SV𝑖 (𝑣) =
1

|𝑁 |!
∑︁

𝜋∈Π (𝑁 )
MC(𝑖, 𝑣, 𝑝𝜋 (𝑖)) .

In a monotone game, the MC of any player in any coalition is

non-negative; therefore, the SV is also non-negative.

Definition 3.8 (Shapley-Fair). An online mechanism is Shapley-
fair (SF) for a value function 𝑣 if for each player 𝑖 ∈ 𝑁 ,

1

|𝑁 |!
∑︁

𝜋∈Π (𝑁 )
𝜙𝑖 (𝑁, 𝑣, 𝜋) = SV𝑖 (𝑣).

In this work, we aim to design online mechanisms that are OIR,

I4EA and SF in games as broad as possible.

Two Simple Mechanisms
As a warm-up, we discuss two simple mechanisms. The first one

computes the Shapley values for the local game on each prefix

𝑆 ⊑ 𝜋 , and allocates these to the players in 𝑆 . This mechanism is

I4EA, because each player’s eventual share is her Shapley value,

regardless of the arrival order. However, this mechanism is not

OIR. Example 3.9 illustrates this. When the arrival order is (𝐴, 𝐵,𝐶),
player 𝐴’s share decreases from 3 to 2.5 when 𝐵 joins, and this

violates OIR. The example also illustrates the calculation of SV’s by

tabulating all players’ MC’s according to the arrival order.

Example 3.9. For𝑁 = {𝐴, 𝐵,𝐶} and 𝑣 = [𝑣 (𝐴), 𝑣 (𝐵), 𝑣 (𝐶), 𝑣 (𝐴𝐵),
𝑣 (𝐴𝐶), 𝑣 (𝐵𝐶), 𝑣 (𝐴𝐵𝐶)] = [3, 2, 1, 4, 5, 3, 6], Table 1 shows the MC of

each player to the existing coalition at her arrival, according to the 6

arrival orders. The SV of player𝐴 is SV𝐴 (𝑣) = (3+3+2+4+3+3)/6 =

3 and the SVs of 𝐵,𝐶 are both 1.5.

The second simple mechanism awards each player, at her arrival,

her MC to the existing coalition, and gives out no more share to

this player in the future.

Definition 3.10. In the Distributing MC (DMC) mechanism,

𝜙𝑖 (𝑣 |𝑆 , 𝜋 |𝑆 ) = MC(𝑖, 𝑣, 𝑝𝜋 (𝑖)).

DMC is Shapley-fair by definition of SV. It is also easily seen to

be OIR for monotone games. However, it is not I4EA in general: in

Example 3.9,𝐴 receives 3 in DMC when 𝜋 is [𝐴,𝐶, 𝐵]. However, for
𝜋 = [𝐶,𝐴, 𝐵], 𝐴’s share becomes 4, violating I4EA. The following

theorem shows that DMC is I4EA iff 𝑣 is submodular.



Theorem 3.11. DMC is I4EA if and only if the value function 𝑣 is
submodular. 1

Proof. “⇒": if DMC is I4EA under 𝑣 , then given any 𝑖, 𝑗 ∈ 𝑁

and any 𝑆 ⊆ 𝑁 \ {𝑖, 𝑗}, construct two joining orders 𝜋 , 𝜋 ′ such that

𝜋 |𝑁 \{𝑖 } = 𝜋 ′|𝑁 \{𝑖 } , 𝑝
𝜋 (𝑖) \ {𝑖} = 𝑆 and 𝑝𝜋

′ (𝑖) \ {𝑖} = 𝑆 ∪ { 𝑗}. Then,
we have

0 ≤ 𝜙𝑖 (𝑣, 𝜋) − 𝜙𝑖 (𝑣, 𝜋 ′)
= MC(𝑖, 𝑣, 𝑆 ∪ {𝑖}) −MC(𝑖, 𝑣, 𝑆 ∪ {𝑖, 𝑗})
= [𝑣 (𝑆 ∪ {𝑖}) − 𝑣 (𝑆)] − [𝑣 (𝑆 ∪ {𝑖, 𝑗}) − 𝑣 (𝑆 ∪ { 𝑗})]

which concludes that 𝑣 is submodular.

“⇐": If 𝑣 is submodular, then for any two joining orders 𝜋 , 𝜋 ′

such that 𝜋 |𝑁 \{𝑖 } = 𝜋 ′|𝑁 \{𝑖 } , 𝑝
𝜋 ′ (𝑖) = 𝑝𝜋 (𝑖) ∪ { 𝑗}, we have

𝜙𝑖 (𝑣, 𝜋) − 𝜙𝑖 (𝑣, 𝜋 ′)

= MC(𝑖, 𝑣, 𝑝𝜋 (𝑖)) −MC(𝑖, 𝑣, 𝑝𝜋
′
(𝑖))

= MC(𝑖, 𝑣, 𝑝𝜋
′
(𝑖) \ { 𝑗}) −MC(𝑖, 𝑣, 𝑝𝜋

′
(𝑖))

=

[
𝑣 (𝑝𝜋

′
(𝑖) \ { 𝑗}) − 𝑣 (𝑝𝜋

′
(𝑖) \ {𝑖, 𝑗})

]
−
[
𝑣 (𝑝𝜋

′
(𝑖)) − 𝑣 (𝑝𝜋

′
(𝑖) \ { 𝑗})

]
≥ 0

which concludes that DMC is I4EA.

□

4 0-1 VALUED MONOTONE GAMES
In this section, we focus on valuation functions that take value

only 0 or 1. Even for such simple functions, it is not a priori clear

whether every function admits a mechanism that is OIR, I4EA and

SF. A corollary of this section answers this question in the negative.

The main technical contribution in this section is a mechanism,

Rewarding The First Critical Player (RFC, Definition 4.2), which we

show to be complete for 0-1 valuation functions, in the sense that for

any 0-1 valued 𝑣 that admits an OIR, I4EA and SF mechanism, RFC

also satisfies these properties (Theorem 4.4). We also analytically

characterize all such valuation functions (Theorem 4.5). We give a

few examples in Section 4.3. In Section 5, we discuss extensions to

general valuation functions.

4.1 The RFC Mechanism
When 𝑣 takes values only 0 or 1 and is monotone, for any arrival

order 𝜋 , there is at most one player whose arrival makes the current

coalition’s value jump from 0 to 1. We call this player the marginal
player of (𝑁, 𝑣, 𝜋). Note that the DMC mechanism allocates all the

value to the marginal player. The RFC mechanism, in contrast, con-

siders players that are indispensable in creating the positive value,

and allocates the value to the first such player. Such indispensable

players are called critical. Formally,

Definition 4.1. Given a 0-1 valued 𝑣 , for any 𝑆 with 𝑣 (𝑆) = 1,

define 𝑆∗ := { 𝑗 ∈ 𝑆 | MC( 𝑗, 𝑣, 𝑆) = 1}. For a 0-1 valued 𝑣 and arrival
order 𝜋 , let 𝑖 be the marginal player; the set of critical players is

CR(𝜋, 𝑣) ≔ (𝑝𝜋 (𝑖))∗ .
1
A value function 𝑣 is submodular if for every 𝑆,𝑇 ⊆ 𝑁 with 𝑇 ⊆ 𝑆 and every

𝑖 ∈ 𝑁 \ 𝑆 , we have 𝑣 (𝑇 ∪ {𝑖 }) − 𝑣 (𝑇 ) ≥ 𝑣 (𝑆 ∪ {𝑖 }) − 𝑣 (𝑆 ) . 𝑣 is supermodular if
this inequality goes the other way for all such 𝑆,𝑇 and 𝑖 .

Recall that 𝑝𝜋 (𝑖) is the coalition formed after 𝑖’s arrival. In plain

language, a player is critical if she is in 𝑝𝜋 (𝑖) and if her removal

makes the coalition’s value drop to 0. By definition, the marginal

player must be critical, but the set of critical players may include

others. In the DMCmechanism, a critical player arriving earlier than

the marginal player does not get allocated anything but may choose

to delay her arrival to become the marginal player herself; this

destroys incentive for early arrival. The RFC mechanism redresses

this by awarding to the earliest among the critical players. Crucially,

the set of critical players is fully determined by 𝑣 |𝑝𝜋 (𝑖 ) and 𝜋 |𝑝𝜋 (𝑖 ) .

Definition 4.2 (RFC). The Rewarding The First Critical Player
(RFC) mechanism is defined by the following value-sharing policy:

for any prefix 𝑆 ⊑ 𝜋 with 𝑣 (𝑆) = 1, and player 𝑖 ∈ 𝑆 ,

𝜙𝑖 (𝑣 |𝑆 , 𝜋 |𝑆 ) =


1, if 𝑖 ∈ CR(𝜋 |𝑆 , 𝑣 |𝑆 ) and
∀𝑗 ∈ CR(𝜋 |𝑆 , 𝑣 |𝑆 ) \ {𝑖}, 𝑖 ⪯ 𝑗,

0, otherwise.

For prefix 𝑆 with 𝑣 (𝑆) = 0, no player gets allocated anything.

Theorem 4.3. For all 0-1 valued, monotone 𝑣 , RFC is OIR and SF.

Proof. OIR: For any prefix 𝑆,𝑇 ⊑ 𝜋 with 𝑇 ⊆ 𝑆 , if 𝑣 (𝑇 ) = 1,

then 𝑣 (𝑆) = 1; the marginal player is the same in the local games

(𝑇, 𝑣 |𝑇 , 𝜋 |𝑇 ) and (𝑆, 𝑣 |𝑆 , 𝜋 |𝑆 ), and so is the set of critical players.

The earliest critical player is therefore also the same in both local

games, and her share is 1 in both local games, and the other players

get 0. If 𝑣 (𝑇 ) = 0, all players get 0 in the local game (𝑇, 𝑣 |𝑇 , 𝜋 |𝑇 ),
and their shares cannot get worse later.

SF: We show that the expected share of any player in RFC is the

same as her expected share in DMC, and DMC is SF by definition of

Shapley value (see Section 3). For joining order 𝜋1 = [..., 𝑗, ..., 𝑖, ...],
let 𝑖 be the marginal player and 𝑗 the player that wins the value in

RFC. Consider 𝜋2 = [..., 𝑖, ..., 𝑗, ...] which is identical to 𝜋1 except

that the positions of 𝑗 and 𝑖 are exchanged. As we have 𝑝𝜋1 (𝑖) =
𝑝𝜋2 ( 𝑗), observe that CR(𝜋1, 𝑣) = CR(𝜋2, 𝑣), and the earliest arrival

in CR(𝜋2, 𝑣) is 𝑖 . Therefore, 𝜙𝑅𝐹𝐶 (𝑣, 𝜋1) = 𝜙𝐷𝑀𝐶 (𝑣, 𝜋2). Further-
more, the mapping from 𝜋1 to 𝜋2 is one-to-one, so we have

1

|𝑁 |!
∑︁

𝜋1∈Π (𝑁 )
𝜙𝑅𝐹𝐶 (𝑣, 𝜋1) =

1

|𝑁 |!
∑︁

𝜋2∈Π (𝑁 )
𝜙𝐷𝑀𝐶 (𝑣, 𝜋2) = SV(𝑣)

□

4.2 Completeness of RFC
The RFC mechanism was motivated to redress an incentive issue

in the DMC mechanism. Perhaps surprisingly, we show that RFC

not only outperforms DMC in the sense that it is I4EA for broader

0-1 valued games, but it is the best among all mechanisms for such

valuation functions: whenever a 0-1 valued 𝑣 admits an OIR, SF

and I4EA mechanism, RFC is such a mechanism as well (Theo-

rem 4.4). We then precisely characterize all such valuation func-

tions(Theorem 4.5). Figure 1 illustrates the corresponding catego-

rization of 0-1 valuation functions.

Theorem 4.4. For any 0-1 valued monotone 𝑣 , if there exists a
mechanism satisfying OIR, SF and I4EA, then RFC is such a mecha-
nism.



Figure 1: Summary of the theorems mentioned in Section 4.2

Theorem 4.5. For any 0-1 valued monotone 𝑣 , RFC is not I4EA
if and only if there exists 𝑖 such that 𝑣 ({𝑖}) = 0 and ∃𝑆 , 𝑆∗ = {𝑖}.
(Recall the definition of 𝑆∗ from Definition 4.1.)

Corollary 4.6. RFC is OIR, SF and I4EA on submodular and
supermodular 0-1 valued monotone games.

To show the correctness of above conclusions, we start with the

proof of Theorem 4.5. The key is to show that a player who loses by

being truthful in RFC can strategically delay her arrival to obtain

a positive share if and only if she can become the unique critical

player by doing so. Then we prove Theorem 4.4 by showing that

no mechanisms can be OIR, SF and I4EA for a valuation function

with the property in Theorem 4.5. Corollary 4.6 is straightforward.

Proof of Theorem 4.5. We prove by showing the following

statements are equivalent. For any 𝑣 ,

(1) RFC is not I4EA.

(2) There exists 𝑆 such that ∃𝑇 ⊊ 𝑆 and ∃𝑖 ∈ 𝑇 , 𝑆∗ = {𝑖} and
𝑇 ∗ ⊋ {𝑖}.

(3) There exists 𝑖 such that 𝑣 ({𝑖}) = 0 and ∃𝑆 , 𝑆∗ = {𝑖}.
1 ⇒ 2. As violating I4EA, there exist 𝜋1 = [...𝑖, 𝑗, ...], 𝜋2 =

[... 𝑗, 𝑖, ...] where 𝜙𝑖 (𝑣, 𝜋1) < 𝜙𝑖 (𝑣, 𝜋2). 2 We discuss by categories

as following:

• If 𝑖 ∉ CR(𝜋1, 𝑣), then we can infer 𝑖 ∉ CR(𝜋2, 𝑣) as 𝑣 (𝑝𝜋2 (𝑖) \
{𝑖}) = 𝑣 (𝑝𝜋1 (𝑖) ∪ { 𝑗} \ {𝑖}) ≥ 𝑣 (𝑝𝜋1 (𝑖) \ {𝑖}) = 1, which

means 𝑖 is not critical in both orders. Therefore, 𝜙𝑖 (𝑣, 𝜋1) =
𝜙𝑖 (𝑣, 𝜋2) = 0, which leads to a contradiction.

• If 𝑖 ∈ CR(𝜋1, 𝑣) but 𝑖 is not the marginal player, then we can

infer that CR(𝜋1, 𝑣) = CR(𝜋2, 𝑣). The reason is that if 𝑗 is

the marginal player in 𝜋1, then 𝑖 is the marginal player in

𝜋2 and CR(𝜋1, 𝑣) = (𝑝𝜋1 ( 𝑗))∗ = (𝑝𝜋2 (𝑖))∗ = CR(𝜋2, 𝑣); if 𝑗
is not the marginal player in 𝜋1, then CR(𝜋1, 𝑣) = CR(𝜋2, 𝑣)
as the players before then marginal player are same in two

orders. Overall,𝜙𝑖 (𝑣, 𝜋1) ≥ 𝜙𝑖 (𝑣, 𝜋2) as 𝑖 moves to a not prior

position comparing to other critical players. This leads to a

contradiction.

• For 𝑖 being the marginal player in 𝜋1, to ensure 𝜙𝑖 (𝑣, 𝜋1) <
𝜙𝑖 (𝑣, 𝜋2), we have 𝜙𝑖 (𝑣, 𝜋1) = 0 and 𝜙𝑖 (𝑣, 𝜋2) = 1. That

2
When the context is clear, we denote 𝜋1 = [ ..., 𝑖, 𝑗, ...] and 𝜋2 = [ ..., 𝑗, 𝑖 ...] as two
orders where only 𝑖 is delayed one position backwards and the order is same for

everyone else.

means 𝑖 is not the unique critical player in 𝜋1 and moreover,

𝑖 is the first critical player in 𝜋2. Together with 𝑣 (𝑝𝜋2 (𝑖)) = 1,

we can infer 𝑖 is the unique critical player in 𝜋2.

In conclusion, we can find 𝑇 = 𝑝𝜋1 (𝑖) and 𝑆 = 𝑝𝜋2 (𝑖) that 𝑇 ∗ ⊋ {𝑖}
and 𝑆∗ = {𝑖}.

1 ⇐ 2. Construct two joining orders 𝜋1 = [..., 𝑖, ... 𝑗, ...], 𝜋2 =

[..., 𝑗, 𝑖, ...] where only the position of 𝑖 is moved and 𝑝𝜋1 (𝑖) = 𝑇 ,

𝑝𝜋1 ( 𝑗) = 𝑝𝜋2 (𝑖) = 𝑆 , then 𝑣 (𝑝𝜋1 (𝑖)) = 0 and 𝑣 (𝑝𝜋2 (𝑖)) = 1. Start

with 𝜋1 and delay 𝑖’s arrival one position backwards each time until

𝜋2, there exists an order where 𝑖 is the marginal player.

2 ⇒ 3. For 𝑆 that 𝑆∗ = {𝑖}, if 𝑣 ({𝑖}) = 1, then ∀𝑇 ⊆ 𝑆 \ {𝑖}
and for every 𝑗 ∈ 𝑇 , we have 𝑣 (𝑇 \ { 𝑗} ∪ {𝑖}) ≥ 𝑣 ({𝑖}) = 1 and

𝑣 (𝑇 ) ≤ 𝑣 (𝑆 \ {𝑖}) = 0. Then (𝑇 ∪ {𝑖})∗ = {𝑖}, which is contradict

to 𝑇 ⊋ {𝑖}. Therefore, 𝑣 ({𝑖}) = 0.

2⇐ 3. Construct 𝜋 = [𝑖, ..., 𝑗, ...] where 𝑝𝜋 ( 𝑗) = 𝑆 . As we have

𝑣 ({𝑖}) = 0 and 𝑣 (𝑆) = 1, we can infer that there is a marginal player

arrives later than 𝑖 and not later than 𝑗 . We denote that player as 𝑖′,
then for𝑇 = 𝑝𝜋 (𝑖′), we have 𝑣 (𝑇 ) = 1 and 𝑣 (𝑇 \{𝑖}) ≤ 𝑣 (𝑆\{𝑖}) = 0.

Therefore, {𝑖, 𝑖′} ⊆ 𝑇 ∗. □

Lemma 4.7. For every 𝑇, 𝑆 satisfying 𝑇 ⊆ 𝑆 , we have 𝑇 ∗ = ∅ if
𝑣 (𝑇 ) = 0 and 𝑇 ∗ ⊇ 𝑆∗ otherwise.

Proof. If 𝑣 (𝑇 ) = 𝑣 (𝑆) = 1, for any 𝑖 ∈ 𝑆∗, 𝑣 (𝑇 \ {𝑖}) ≤ 𝑣 (𝑆 \
{𝑖}) = 0, so 𝑖 ∈ 𝑇 ∗. Notice that there exists 𝑇 ⊆ 𝑆 satisfying

𝑣 (𝑇 \ {𝑖}) = 0 < 𝑣 (𝑆 \ {𝑖}), so 𝑇 ∗ ⊄ 𝑆∗.
If 𝑣 (𝑇 ) = 0, it’s obvious that 𝑇 ∗ = ∅. □

Proof of Theorem 4.4. We prove this theorem by showing no

mechanisms satisfy OIR, SF and I4EA together in the games char-

acterized by Theorem 4.5. For such 𝑖 in Theorem 4.5, we can find 𝑆

that 𝑆∗ = {𝑖} and ∀𝑗 ∈ 𝑆 satisfying 𝑗 ≠ 𝑖 , (𝑆 \ { 𝑗})∗ ⊋ {𝑖}. This can
be guaranteed because if there is 𝑗 that (𝑆 \ { 𝑗})∗ = {𝑖}, we can
eliminate 𝑗 from 𝑆 . As we have 𝑣 ({𝑖}) = 0, so the coalition after the

eliminations would be a superset of {𝑖}. What’s more, we can infer

∀𝑇 ⊆ 𝑆 , 𝑇 ∗ ⊋ {𝑖} or 𝑇 ∗ = ∅ with Lemma 4.7.

We consider the existence of mechanism on 𝑣 |𝑆 . The SV of 𝑖 can

be derived as

SV𝑖 (𝑣 |𝑆 ) =
1

|𝑆 |!
∑︁

𝑇 ⊆𝑆\{𝑖 }
|𝑇 |!( |𝑆 | − |𝑇 | − 1)! MC(𝑖, 𝑣 |𝑆 ,𝑇 ∪ {𝑖})

=
1

|𝑆 |!
∑︁

𝑇 ⊆𝑆,𝑖∈𝑇 ∗
( |𝑇 | − 1)!( |𝑆 | − |𝑇 |)!

=
1

|𝑆 |!
∑︁

𝑇 ⊆𝑆,𝑇 ∗={𝑖 }
( |𝑇 | − 1)!( |𝑆 | − |𝑇 |)!

+ 1

|𝑆 |!
∑︁

𝑇 ⊆𝑆,𝑇 ∗⊋{𝑖 }
( |𝑇 | − 1)!( |𝑆 | − |𝑇 |)!

=
1

|𝑆 |!
©­«( |𝑆 | − 1)! +

∑︁
𝑇⊊𝑆,𝑣|𝑆 (𝑇 )≠0

( |𝑇 | − 1)!( |𝑆 | − |𝑇 |)!ª®¬
For joining order 𝜋 |𝑆 where 𝑖 is not the last to arrive, an OIR

and SF mechanism will allocate all the value to the players before

𝑗 because 𝑣 |𝑆 (𝑆 \ { 𝑗}) = 1. In such joining orders, the expected

value of 𝑖 is equal to SV𝑖 (𝑣 |𝑆\{ 𝑗 } ). Then, if we only consider the

joining orders where 𝑖 is not the last to join, the expected value

of 𝑖 is to average the expected value of 𝑖 in each joining order. Let



𝜋 |𝑆 ∼ [..., 𝑖, ...] and 𝜋 |𝑆 ∼ [..., 𝑖] denote that 𝑖 is not the last to arrive
and 𝑖 is the last to arrive respectively. Then, we have

E𝜋 |𝑆∼[ ...,𝑖,..., 𝑗 ]𝜙𝑖 (𝜋 |𝑆 , 𝑣 |𝑆 ) =
∑

𝑗∈𝑆\{𝑖 } SV𝑖 (𝑣 |𝑆−{ 𝑗 } )
|𝑆 | − 1

By classifying the joining orders, we can calculate the expected

value of 𝑖 as

1

|𝑆 |!
∑︁

𝜋 |𝑆 ∈Π (𝑆 )
𝜙𝑖 (𝑣 |𝑆 , 𝜋 |𝑆 )

=
( |𝑆 | − 1)!
|𝑆 |! E𝜋 |𝑆∼[ ...,𝑖 ] [𝜙𝑖 (𝑣 |𝑆 , 𝜋 |𝑆 )]

+ (|𝑆 | − 1) ( |𝑆 | − 1)!
|𝑆 |! E𝜋 |𝑆∼[ ...,𝑖,...] [𝜙𝑖 (𝑣 |𝑆 , 𝜋 |𝑆 )]

=
( |𝑆 | − 1)!
|𝑆 |! E𝜋 |𝑆∼[ ...,𝑖 ] [𝜙𝑖 (𝑣 |𝑆 , 𝜋 |𝑆 )]

+ (|𝑆 | − 1) ( |𝑆 | − 1)!
|𝑆 |!

(∑
𝑗∈𝑆\{𝑖 } SV𝑖 (𝑣 |𝑆−{ 𝑗 } )

|𝑆 | − 1

)
=
( |𝑆 | − 1)!
|𝑆 |! E𝜋 |𝑆∼[ ...,𝑖 ] [𝜙𝑖 (𝑣 |𝑆 , 𝜋 |𝑆 )]

+ 1

|𝑆!|
∑︁

𝑗∈𝑆\{𝑖 }

∑︁
𝑇 ⊆𝑆\{ 𝑗 },𝑖∈𝑇 ∗

( |𝑇 | − 1)!( |𝑆 | − 1 − |𝑇 |)! (1)

=
( |𝑆 | − 1)!
|𝑆 |! E𝜋 |𝑆∼[ ...,𝑖 ] [𝜙𝑖 (𝑣 |𝑆 , 𝜋 |𝑆 )]

+ 1

|𝑆!|
∑︁

𝑇⊊𝑆,𝑣|𝑆 (𝑇 )≠0

( |𝑇 | − 1)!( |𝑆 | − |𝑇 |)! (2)

Here, the term in (1) equals to the term in (2) as they are both

counting the number of joining orders where 𝑖 can create MC but

not being the last to join with different aspects. More concretely,

the term in (1) counts by classifying the last member of the order

while the term in (2) counts directly. Therefore, to ensure the SF, the

mechanism should guarantee E𝜋 |𝑆∼[ ...,𝑖 ] [𝜙𝑖 (𝑣 |𝑆 , 𝜋 |𝑆 )] = 1 which

means allocating 1 to 𝑖 when 𝑖 is the last to join. However, when 𝑖

is not the last to join, 𝑖 is expected to receive less than 1, so there

exists chance for 𝑖 to increase the value by delay. In conclusion,

when RFC is not I4EA on 𝑣 , then any mechanism satisfying OIR

and SF is not I4EA. □

Proof of Corollary 4.6. Assume there exists 𝑖 satisfying 𝑣 ({𝑖})
= 0 and there exists 𝑆 such that 𝑆∗ = {𝑖}. Then we have 𝑣 ({𝑖}) −
𝑣 (∅) = 0 < 1 = 𝑣 (𝑆) − 𝑣 (𝑆 \ {𝑖}), which leads to a contradiction to

submodularity. For 𝑇 ⊊ 𝑆 that 𝑇 ∗ ⊋ {𝑖}, for every 𝑗 ∈ 𝑇 ∗ \ {𝑖}, we
have 𝑣 (𝑇 ) − 𝑣 (𝑇 \ { 𝑗}) = 1 > 0 = 𝑣 (𝑆) − 𝑣 (𝑆 \ { 𝑗}), which leads to

a contradiction to supermodularity. □

4.3 Examples
Example 4.8 shows a three-player valuation function that satisfies

the condition in Theorem 4.5. We show in Proposition 4.9 that this

is in fact the only three-player valuation with this property. We

then give another valuation function in Example 4.10 that is neither

submodular nor supermodular, for which RFC is OIR, SF and I4EA.

Example 4.8. Consider a game where 𝑁 = {𝐴, 𝐵,𝐶} and 𝑣 =

[𝑣 (𝐴), 𝑣 (𝐵), 𝑣 (𝐶), 𝑣 (𝐴𝐵), 𝑣 (𝐴𝐶), 𝑣 (𝐵𝐶), 𝑣 (𝐴𝐵𝐶)] = [0, 0, 0, 0, 1, 1, 1],
the marginal player and the critical players are listed in the 2nd

Table 2: The marginal player, critical players and the value
receiver determined by RFC of game where 𝑁 = {𝐴, 𝐵,𝐶} and
𝑣 = [0, 0, 0, 0, 1, 1, 1] in every order.

Joining

Order

Marginal

Player

Critical

Players

Value

Receiver

[A,B,C] C C C

[A,C,B] C A,C A

[B,A,C] C C C

[B,C,A] C B,C B

[C,A,B] A C,A C

[C,B,A] B C,B C

Table 3: 3-player 0-1 valued monotone games and the inter-
pretation of the value allocation on them.

𝑣 Allocation of RFC I4EA

[1,1,1,1,1,1,1] To the first joining player

√

[0,1,1,1,1,1,1] To the first of {𝐵,𝐶} √

[0,0,1,1,1,1,1]

To 𝐶 if she is the first or second.

To first of {𝐴, 𝐵} in other case.

√

[0,0,0,1,1,1,1] To the first joining player

√

[0,0,1,0,1,1,1] To 𝐶 .
√

[0,0,0,0,1,1,1]

To 𝐶 if she is the first or third.

To first of {𝐴, 𝐵} in other case.

[0,0,0,0,0,1,1] To the first of {𝐵,𝐶} √

[0,0,0,0,0,0,1] To the first joining player

√

column and 3rd column of Table 2. In the 4th column, we list the

receivers of the values determined by RFC. In this game, 𝑅𝐹𝐶 is

not I4EA as we have 𝑣 (𝐶) = 0 and {𝐴, 𝐵,𝐶}∗ = {𝐶}. More specifi-

cally, in order [𝐴,𝐶, 𝐵],𝐶 is the marginal player but not the unique

critical player when she joins, so the value would be allocated to 𝐴.

However, in order [𝐴, 𝐵,𝐶], 𝐶 is both the marginal player and the

unique critical player when she joins, so she would get the value.

Let 𝑁 = {𝐴, 𝐵,𝐶} and consider all possible 0-1 valued monotone

games on 𝑁 . Without loss of generality, we assume 𝑣 (𝐶) ≥ 𝑣 (𝐵) ≥
𝑣 (𝐴) and 𝑣 (𝐵𝐶) ≥ 𝑣 (𝐴𝐶) ≥ 𝑣 (𝐴𝐵). The games satisfying our as-

sumption and the interpretations of the value allocations are listed

in Table 3. 𝑣 = [0, 0, 0, 0, 1, 1, 1] is the only one that RFC is not I4EA.

Proposition 4.9. For 𝑁 = {𝐴, 𝐵,𝐶} and 𝑣 satisfying 𝑣 (𝐶) ≥
𝑣 (𝐵) ≥ 𝑣 (𝐴) and 𝑣 (𝐵𝐶) ≥ 𝑣 (𝐴𝐶) ≥ 𝑣 (𝐴𝐵), RFC is not I4EA if and
only if 𝑣 = [0, 0, 0, 0, 1, 1, 1].

Example 4.10. Consider a game where 𝑁 = {𝐴, 𝐵,𝐶} and 𝑣 =

[0, 0, 0, 1, 1, 1, 1], notice that 𝑣 is neither submodular nor supermod-

ular as 𝑣 (𝐴𝐵) − 𝑣 (𝐵) = 1 > 0 = 𝑣 (𝐴𝐵𝐶) − 𝑣 (𝐵𝐶) = 𝑣 (𝐴) − 𝑣 (∅).
The RFC always allocates the value to the first joining player after

the second player joins, which is I4EA.

5 EXTENSION TO GENERAL VALUATION
FUNCTIONS

In this section, we propose an extension of RFC for general valua-

tion functions. We give a procedure (Algorithm 1) that decomposes



any monotone valuation function into a weighted sum of 0-1 mono-

tone valuation functions. Importantly, this decomposition is done

in an online fashion as players arrive. An RFC is then run, simulta-

neously, on each 0-1 valued component, and each player’s share is

the weighted sum of her shares from the decomposed 0-1 games.

5.1 GM-Decomposition
We firstly introduce the decomposing process in the mechanism,

which is called the greedy monotone decomposition (GM). GM gives

a non-negative linear combination of a monotone game as 𝑣 =∑
𝑘 𝑐𝑘𝑔𝑘 where {𝑔𝑘 } are the 0-1 game components and {𝑐𝑘 } are the

coefficients. We denote 𝐷 (𝑣) = {(𝑔𝑘 , 𝑐𝑘 )} as the set of component-

coefficient pairs which determines a decomposition. In each itera-

tion, we greedily split a scaled 0-1 valued monotone set function

from the current set function until it becomes zero. An example for

this decomposition is

𝑣 =[1, 2, 3, 4, 5, 6, 7]
=[1, 1, 1, 1, 1, 1, 1] + [0, 1, 1, 1, 1, 1, 1] + [0, 0, 1, 1, 1, 1, 1]
+ [0, 0, 0, 1, 1, 1, 1] + [0, 0, 0, 0, 1, 1, 1] + [0, 0, 0, 0, 0, 1, 1]
+ [0, 0, 0, 0, 0, 0, 1] .

We formalize the GM in Algorithm 1, where 𝑣𝑘 , 𝑐𝑘 , 𝑔𝑘 denote

the function to be split, the coefficient and the component we get

respectively in the 𝑘th iteration. Intuitively, in each iteration of

Algorithm 1, we find the coalition with minimum non-zero value

in 𝑣𝑘 and assigned it to 𝑐𝑘 and 𝑔𝑘 has value 1 for all non-zero value

coalitions in 𝑣𝑘 . Then we decrease all the positive values in 𝑣𝑘 by

𝑐𝑘 and start next iteration. At the end of the iterations, we get the

GM of the input function 𝑣 .

It is easy to check that GM has the following properties, which

is the reason why we choose it for extending the RFC: (1) the GM

provides a positive linear combination of a set function; (2) the

component functions are monotone, shown in Proposition 5.1; (3)

a game is decomposed consistently in both global and local games,

shown in Proposition 5.2.

Algorithm 1 Greedy Monotone Decomposition (GM)

Input: monotone 𝑣 .

Output: a decomposition 𝐷 (𝑣).
1: Let 𝐷 be an empty list.

2: Let 𝑣1 be a copy of 𝑣 .

3: while max(𝑣𝑘 ) > 0 do
4: 𝑆 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑇 ⊆𝑁,𝑣 (𝑇 )>0

𝑣𝑘 (𝑇 )
5: 𝑐𝑘 ← 𝑣𝑘 (𝑆)
6: Let 𝑔𝑘 be a set function.

7: for 𝑇 ⊆ 𝑁 do
8: if 𝑣𝑘 (𝑇 ) > 0 then
9: 𝑔𝑘 (𝑇 ) ← 1

10: else if 𝑣𝑘 (𝑇 ) = 0 then
11: 𝑔𝑘 (𝑇 ) ← 0

12: 𝑣𝑘+1 ← 𝑣𝑘 − 𝑐𝑘𝑔𝑘
13: Put (𝑔𝑘 , 𝑐𝑘 ) into 𝐷 .
14: 𝑘 ← 𝑘 + 1

15: return 𝐷 .

Table 4: The GMs of 𝑣 = [1, 2, 3, 4, 5, 6, 7] and its restriction 𝑣 |𝐴𝐵 .

Coalition A B C AB AC BC ABC Coefficient

𝑣 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1

Components

of 𝐷 (𝑣)

1 1

𝑣 |𝐴𝐵 1 2 4

1 1 1 1

1 1 1

Components

of 𝐷 (𝑣 |𝐴𝐵)
1 2

Proposition 5.1. GM outputs a decomposition 𝑣 =
∑
𝑘 𝑐𝑘𝑔𝑘

where {𝑔𝑘 } are 0-1 valued monotone functions.

Proof. Notice that in GM, we have the relation that ∀𝑆1, 𝑆2,

if 𝑣 (𝑆1) ≤ 𝑣 (𝑆2), then ∀𝑘, 𝑣𝑘 (𝑆1) ≤ 𝑣𝑘 (𝑆2) and 𝑔𝑘 (𝑆1) ≤ 𝑔𝑘 (𝑆2) .
Therefore, we can infer that ∀𝑘 , if 𝑣 is monotone, then 𝑣𝑘 , 𝑔𝑘 are

monotone games. □

Proposition 5.2. Given 𝑣 with 𝐷 (𝑣) = {(𝑔𝑘 , 𝑐𝑘 )}, then for any 𝑆 ,
then 𝐷 (𝑣 |𝑆 ) is equivalent to {(𝑔𝑘 |𝑆 , 𝑐𝑘 )} where 𝑔𝑘 |𝑆 is 𝑔𝑘 restricted
to 𝑆 .

Proof. Let 𝐷 (𝑣 |𝑆 ) = {𝑓𝑘 ′ , 𝑒𝑘 ′ } be the GM of 𝑣 |𝑆 . We claim that

for any 𝑘′, there exists 𝑘 that 𝑔𝑘 |𝑆 = 𝑓𝑘 ′ . Otherwise, there exists

𝑆 and 𝑇 that 𝑣 (𝑆) ≥ 𝑣 (𝑇 ) while 𝑣 |𝑆 (𝑆) < 𝑣 |𝑆 (𝑇 ), which leads to a

contradiction. Now we can rewrite the decomposition of 𝑣 |𝑆 as

𝑣 |𝑆 =
∑︁
𝑘 ′

𝑓𝑘 ′
©­­«

∑︁
𝑘 :𝑔𝑘 |𝑆=𝑓𝑘′

𝑐𝑘
ª®®¬ .

Notice that {𝑓𝑘 ′ } are linear independent, so the corresponding de-

composition is unique, whichmeans 𝑒𝑘 ′ =
∑
𝑘 :𝑔𝑘 |𝑆=𝑓𝑘′

𝑐𝑘 . Therefore,

𝐷 (𝑣 |𝑆 ) is equivalent to {(𝑔𝑘 |𝑆 , 𝑐𝑘 )} if we merge the coefficients of

homogeneous components. □

Example 5.3. To better show the Proposition 5.2, we build Ta-

ble 4 for the previous decomposition example. It contains the GM-

decompositions of 𝑣 = [1, 2, 3, 4, 5, 6, 7] and 𝑣 |𝐴𝐵 = [1, 2, 4]. The red
cells are the restrictions to {𝐴, 𝐵} of the components in 𝐷 (𝑣). In
𝐷 (𝑣), only 4 component functions have non-zero restrictions on

{𝐴, 𝐵}. The blue cells are decomposition of 𝑣 |𝐴𝐵 . If we merge the

homogeneous components’ coefficients, the red cells are equivalent

to the blue cells. That means 𝑣 |𝐴𝐵 are decomposed consistently in

𝐷 (𝑣) and 𝐷 (𝑣 |𝐴𝐵).

5.2 The Extended RFC
Now we propose the extended RFC mechanism based on GM. The

mechanism firstly does GM-decomposition on input set function 𝑣 .

Then it calculates the value in each 0-1 valued monotone games by

RFC and accumulates them with coefficients to be the value in 𝑣 .

The properties of RFC are maintained through this process.



Definition 5.4. The extended rewarding first critical player mech-
anism (eRFC) is defined by

¯𝜙𝑖 (𝑣 |𝑆 , 𝜋𝑆 ) =
∑︁

(𝑔𝑘 ,𝑐𝑘 ) ∈𝐷 (𝑣|𝑆 )
𝑐𝑘𝜙

𝑅𝐹𝐶
𝑖 (𝑔𝑘 , 𝜋𝑆 )

where 𝜙𝑅𝐹𝐶
𝑖

is the value-sharing policy of RFC and 𝐷 (·) is the
GM-decomposition.

Theorem 5.5. eRFC is SF and OIR.

Proof. SF: SF is maintained as the SV satisfies additivity, i.e.
SV𝑖 (𝑣 +𝑤) = SV𝑖 (𝑣) + SV𝑖 (𝑤) for any 𝑣,𝑤 . Therefore, we have

¯𝜙𝑖 (𝑣, 𝜋) =
∑︁

(𝑔𝑘 ,𝑐𝑘 ) ∈𝐷 (𝑣)
𝑐𝑘𝜙

𝑅𝐹𝐶
𝑖 (𝑔𝑘 , 𝜋)

=
∑︁

(𝑔𝑘 ,𝑐𝑘 ) ∈𝐷 (𝑣)
𝑐𝑘 SV𝑖 (𝑔𝑘 ) = SV𝑖 (𝑣)

OIR: Given 𝜋 , for any 𝑇, 𝑆 ⊑ 𝜋 with 𝑇 ⊆ 𝑆 , we have

¯𝜙𝑖 (𝑣 |𝑆 , 𝜋 |𝑆 ) =
∑︁

(𝑔𝑘 ,𝑐𝑘 ) ∈𝐷 (𝑣|𝑆 )
𝑐𝑘𝜙

𝑅𝐹𝐶
𝑖 (𝑔𝑘 , 𝜋 |𝑆 )

≥
∑︁

(𝑔𝑘 ,𝑐𝑘 ) ∈𝐷 (𝑣|𝑆 )
𝑐𝑘𝜙

𝑅𝐹𝐶
𝑖 (𝑔𝑘 |𝑇 , 𝜋 |𝑇 )

= ¯𝜙𝑖 (𝑣 |𝑇 , 𝜋 |𝑇 ) .

□

Theorem 5.6. eRFC is I4EA for monotone 𝑣 if for every 𝑔𝑘 in 𝐷 (𝑣),
RFC is I4EA on 𝑔𝑘 .

Proof. For 𝜋1 = [..., 𝑖, 𝑗, ...] and 𝜋2 = [..., 𝑗, 𝑖, ...], we have
¯𝜙𝑖 (𝑣, 𝜋1) =

∑︁
(𝑐𝑘 ,𝑔𝑘 ) ∈𝐷 (𝑣)

𝑐𝑘 · 𝜙𝑖 (𝑔𝑘 , 𝜋1)

≥
∑︁

(𝑐𝑘 ,𝑔𝑘 ) ∈𝐷 (𝑣)
𝑐𝑘 · 𝜙𝑖 (𝑔𝑘 , 𝜋2) = ¯𝜙𝑖 (𝑣, 𝜋2)

□

Corollary 5.7. For symmetric monotone games, eRFC is I4EA.

Proof. Notice that for symmetric games, we have 𝑣 (𝑆1) = 𝑣 (𝑆2)
if |𝑆1 | = |𝑆2 |. Therefore, in 𝐷 (𝑣), every 𝑔𝑘 is also symmetric. In

symmetric 𝑔𝑘 , ∀𝑖, 𝑗 ∈ 𝑆 satisfying 𝑖 ≠ 𝑗 , 𝑔𝑘 (𝑆 \ {𝑖}) = 𝑔𝑘 (𝑆 \ { 𝑗}).
We can infer that if 𝑖 ∈ 𝑆∗, then 𝑗 ∈ 𝑆∗. This leads to an impossibility

of the condition 𝑆∗ = {𝑖}, 𝑔𝑘 ({𝑖}) = 0. □

In Theorem 5.6, the condition is sufficient but not necessary,

which is different from the results in 0-1 valued monotone games.

In the following example, eRFC satisfies the desired properties even

there is a component function where RFC is not I4EA.

Example 5.8. Let 𝑣 = [0, 1, 1, 1, 3, 2, 3] which can be decomposed

as [0, 1, 1, 1, 1, 1, 1, 1] + [0, 0, 0, 0, 1, 1, 1] + [0, 0, 0, 0, 1, 0, 1]. Here we
have [0, 0, 0, 0, 1, 1, 1] violating the condition. The allocations to

players in different joining orders are shown in Table 5. Even 𝐶

could delay to get a higher value in a component game, she might

lose in the other component games. Therefore, the delay would not

bring an increase on the total value to 𝐶 in original game.

Table 5: The allocations determined by eRFC to 𝐴, 𝐵,𝐶 in all
possible joining orders in the game where 𝑁 = {𝐴, 𝐵,𝐶} and
𝑣 = [0, 1, 1, 1, 3, 2, 3]. The allocations of RFC to the components
of 𝑣 are listed in the middle part of the table.

Joining Order Components

Allocations in

Components

Total Value

Allocation

A B C A B C

[A,B,C]

[0,1,1,1,1,1,1] 1

1 1 1[0,0,0,0,1,1,1] 1

[0,0,0,0,1,0,1] 1

[A,C,B]

[0,1,1,1,1,1,1] 1

2 0 1[0,0,0,0,1,1,1] 1

[0,0,0,0,1,0,1] 1

[B,A,C]

[0,1,1,1,1,1,1] 1

1 1 1[0,0,0,0,1,1,1] 1

[0,0,0,0,1,0,1] 1

[B,C,A]

[0,1,1,1,1,1,1] 1

2 1[0,0,0,0,1,1,1] 1

[0,0,0,0,1,0,1] 1

[C,A,B]

[0,1,1,1,1,1,1] 1

3[0,0,0,0,1,1,1] 1

[0,0,0,0,1,0,1] 1

[C,B,A]

[0,1,1,1,1,1,1] 1

3[0,0,0,0,1,1,1] 1

[0,0,0,0,1,0,1] 1

It is also worth to note that GM might not be the best choice

for decomposition from a global point of view. For example, if we

decompose a submodular function 𝑣 = [1, 1, 1, 1, 2, 2, 2] as the sum
of [1, 1, 1, 1, 1, 1, 1] and [0, 0, 0, 0, 1, 1, 1], then running eRFC on the

components and accumulating the reward is not I4EA. However,

with global information, we can also decompose the function as

[1, 1, 0, 1, 1, 1, 1] and [0, 0, 1, 0, 1, 1, 1] satisfying the condition. For

this work, we do not extend RFC with such a decomposition as we

require a mechanism that only uses local information. It is an open

question that if there exist better decomposition methods to extend

RFC so the I4EA can be maintained on more games.

6 FUTUREWORK
There are several future directions worth investigation. For 0-1

valued monotone games, one may consider to characterize a whole

set of mechanisms satisfying all the properties on solvable games.

For general monotone games, the characterization of all solvable

games is still open and there might exist other decomposition that

works on more games. It is also worth studying the I4EA property

in offline (make the decisions until everyone joined) or other (such

as cost-sharing and hedonic game) settings.
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