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Announcements

1 Piazza is online!
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Recap: What is Game Theory

Game theory is the study of mathematical models of
conflict and cooperation between intelligent rational
decision-makers [von Neumann and Morgenstern 1944].

Extensive form: Go, poker
Normal form: rock-paper-scissors
Cooperative game: coordination games
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Mechanism Design (Reverse Game Theory)

Mechanism Design is to answer...

Question
How to design a mechanism/game, toward desired objectives,
in strategic settings?

Roger B. Myerson (born March 29, 1951,
University of Chicago, US)

Nobel Prize for economics (2007), for "having laid
the foundations of mechanism design theory."
Eleven game-theorists have won the economics
Nobel Prize.
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When Game Theory Meets CS?

Algorithmic Game Theory is an area in the intersection of
game theory and algorithm design, whose objective is to
design algorithms in strategic environments [Nisan et al.
2007].

Computing in Games: algorithms for
computing equilibria
Algorithmic Mechanism Design: design
games that have both good
game-theoretical and algorithmic
properties
...
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When Game Theory Meets CS?

Algorithmic Game Theory is an area in the intersection of
game theory and algorithm design, whose objective is to
design algorithms in strategic environments [Nisan et al.
2007].

It is multidisciplinary:
Artificial Intelligence→ Multi-agent Systems→ Algorithmic
Game Theory
Economics
Theoretical Computer Science
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Algorithmic Game Theory in Artificial Intelligence

Algorithmic Game Theory research in AI (multi-agent
systems):

Game Playing: computation challenge, AlphaGo, poker
Social Choice: preferences aggregation, voting, prediction
Mechanism Design: the allocation of scarce resources
(security games), Ad auctions, online auctions,
false-name-proof mechanisms (Makoto Yokoo)

IJCAI Computers and Thought Award: 5 out of the 12
winners (1999-2017) had worked on AGT, Nick Jennings
(1999), Tuomas Sandholm (2003), Peter Stone (2007),
Vice Conitzer (2011), Ariel Procaccia (2015).
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Classical Games

Prisoners’ Dilemma

Two players: P1 and P2
Strategies: Confess, Silent
Outcomes: number of
years in prison

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 5, 2007 14:12

4 basic solution concepts and computational issues

if they both confess, they both will get a small break for cooperating with the
authorities and will have to serve prison sentences of 4 years each (rather than 5).

Clearly, there are four total outcomes depending on the choices made by each
of the two prisoners. We can succinctly summarize the costs incurred in these
four outcomes via the following two-by-two matrix.

❅
❅❅

P1

P2

Confess

Silent

Confess Silent

4 1

4 5

5 2

1 2

Each of the two prisoners “P1” and “P2” has two possible strategies (choices)
to “confess” or to remain “silent.” The two strategies of prisoner P1 correspond to
the two rows and the two strategies of prisoner P2 correspond to the two columns
of the matrix. The entries of the matrix are the costs incurred by the players in
each situation (left entry for the row player and the right entry for the column
player). Such a matrix is called a cost matrix because it contains the cost incurred
by the players for each choice of their strategies.

The only stable solution in this game is that both prisoners confess; in each
of the other three cases, at least one of the players can switch from “silent” to
“confess” and improve his own payoff. On the other hand, a much better outcome
for both players happens when neither of them confesses. However, this is not
a stable solution – even if it is carefully planned out – since each of the players
would be tempted to defect and thereby serve less time.

The situation modeled by the Prisoner’s Dilemma arises naturally in a lot of different
situations; we give below an ISP routing context.

Example 1.2 (ISP routing game) Consider Internet Service Providers (ISPs)
that need to send traffic to each other. In routing traffic that originates in one ISP
with destination in a different ISP, the routing choice made by the originating ISP
also affects the load at the destination ISP. We will see here how this situation
gives rise to exactly the Prisoner’s dilemma described above.

Consider two ISPs (Internet Service Providers), as depicted in Figure 1.1, each
having its own separate network. The two networks can exchange traffic via two
transit points, called peering points, which we will call C and S.

In the figure we also have two origin–destination pairs si and ti each crossing
between the domains. Suppose that ISP 1 needs to send traffic from point s1 in his
own domain to point t1 in 2nd ISP’s domain. ISP 1 has two choices for sending its
traffic, corresponding to the two peering points. ISPs typically behave selfishly
and try to minimize their own costs, and send traffic to the closest peering point,
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Classical Games

Battle of the Sexes

Two players: Girl, Boy
Strategies: Baseball (B),
Softball (S)
Outcomes:
payoffs/benefits/utilities

P1: SBT
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games, old and new 7

where the common resource of the environment is overused by the n players increasing
the cost from 3 to n for each players.

1.1.3 Coordination Games

In our next example, there will be multiple outcomes that can be stable. This game is
an example of a so-called “coordination game.” A simple coordination game involves
two players choosing between two options, wanting to choose the same.

Example 1.5 (Battle of the sexes) Consider that two players, a boy and a girl,
are deciding on how to spend their evening. They both consider two possibilities:
going to a baseball game or going to a softball game. The boy prefers baseball and
the girl prefers softball, but they both would like to spend the evening together
rather than separately. Here we express the players’ preferences again via payoffs
(benefits) as follows.

❅
❅❅

Girl

Boy

B

S

B S

5 1

6 1

2 6

2 5

Clearly, the two solutions where the two players choose different games are
not stable – in each case, either of the two players can improve their payoff by
switching their action. On the other hand, the two remaining options, both attend-
ing the same game, whether it is softball or baseball, are both stable solutions; the
girl prefers the first and the boy prefers the second.

Coordination games also arise naturally in many contexts. Here we give an example
of a coordination game in the context of routing to avoid congestion. The good outcomes
in the Battle of the Sexes were to attend the same game. In contrast, in the routing game,
good outcomes will require routing on different paths to avoid congestion. Hence, this
will be an “anticoordination” game.

Example 1.6 (Routing congestion game) Suppose that two traffic streams ori-
ginate at proxy node O, and need to be routed to the rest of the network, as
shown in Figure 1.2. Suppose that node O is connected to the rest of the network
via connection points A and B, where A is a little closer than B. However, both
connection points get easily congested, so sending both streams through the same
connection point causes extra delay. Good outcomes in this game will be for the
two players to “coordinate” and send their traffic through different connection
points.
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Classical Games

Simultaneous Move Game

A set of n players
Each player i has a set of strategies Si

Let s = (s1, · · · , sn) be the vector of strategies selected by
the n players. Also let s = (si , s−i).
Let S =

∏
i Si be the strategy vector space of all players.

Each s ∈ S determines the outcome for each player,
denote ui(s) the utility of player i under s.
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Solution Concepts

Dominant Strategy

Definition
A strategy si ∈ Si is a dominant strategy for player i , if for all
s′ ∈ S, we have that ui(si , s′−i) ≥ ui(s′i , s

′
−i)

Definition
A strategy vector s ∈ S is a dominant strategy equilibrium, if for
each player i , and each alternate strategy vector s′ ∈ S, we
have that ui(si , s′−i) ≥ ui(s′i , s

′
−i)
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Solution Concepts

Nash Equilibrium

Definition
A strategy vector s ∈ S is said to be a Nash equilibrium if for all
players i and each alternate strategy s′i ∈ Si , we have that

ui(si , s−i) ≥ ui(s′i , s−i)
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A strategy vector s ∈ S is said to be a Nash equilibrium if for all
players i and each alternate strategy s′i ∈ Si , we have that
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What is the difference between Dominant Strategy
Equilibrium and Nash Equilibrium?
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Solution Concepts

Another Game: Matching Pennies

Two players: 1, 2
Strategies: Head (H), Tail
(T)
Outcomes: the row player
(1) wins if the two pennies
match, while the column
player wins if they do not
match

P1: SBT
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8 basic solution concepts and computational issues

A B

O

A

A B

B
2

1

5

5 2

1

6

6

Traffic 1

Traffic 2

Network

Figure 1.2. Routing to avoid congestion and the corresponding cost matrix.

We model this situation via a game with the two streams as players. Each
player has two available strategies – routing through A or routing through
B – leading to four total possibilities. The matrix of Figure 1.2 expresses the
costs to the players in terms of delays depending on their routing choices.

1.1.4 Randomized (Mixed) Strategies

In the games we considered so far, there were outcomes that were stable in the sense
that none of players would want to individually deviate from such an outcome. Not all
games have such stable solutions, as illustrated by the following example.

Example 1.7 (Matching pennies) Two payers, each having a penny, are asked
to choose from among two strategies – heads (H ) and tails (T ). The row player
wins if the two pennies match, while the column player wins if they do not match,
as shown by the following payoff matrix, where 1 indicates win and −1 indicated
loss.

❅
❅❅
1

2

H

T

H T

1 -1

-1 1

-1 1

1 -1

One can view this game as a variant of the routing congestion game in which the
column player is interested in getting good service, hence would like the two players to
choose different routes, while the row player is interested only in disrupting the column
player’s service by trying to choose the same route. It is easy to see that this game has
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Mixed Strategies

Definition
Each player i picks a probability distribution pi over his set of
possible strategies Si , such a choice is called a mixed strategy.

Given a player i ’s probability distribution choice pi over Si ,
let pi(si) be the probability to choose strategy si , we have∑

si∈Si
pi(si) = 1.

Assume that players are risk-neutral; that is, they act to
maximize the expected payoff.
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Mixed Strategy Nash Equilibrium

Two players: 1, 2
Strategies: Head (H), Tail
(T)
Outcomes: the row player
(1) wins if the two pennies
match, while the column
player wins if they do not
match
If player 1 uses mixed
strategy
p1(H) = p1(T ) = 0.5, what
is the best strategy for
player 2?
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We model this situation via a game with the two streams as players. Each
player has two available strategies – routing through A or routing through
B – leading to four total possibilities. The matrix of Figure 1.2 expresses the
costs to the players in terms of delays depending on their routing choices.

1.1.4 Randomized (Mixed) Strategies

In the games we considered so far, there were outcomes that were stable in the sense
that none of players would want to individually deviate from such an outcome. Not all
games have such stable solutions, as illustrated by the following example.

Example 1.7 (Matching pennies) Two payers, each having a penny, are asked
to choose from among two strategies – heads (H ) and tails (T ). The row player
wins if the two pennies match, while the column player wins if they do not match,
as shown by the following payoff matrix, where 1 indicates win and −1 indicated
loss.
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One can view this game as a variant of the routing congestion game in which the
column player is interested in getting good service, hence would like the two players to
choose different routes, while the row player is interested only in disrupting the column
player’s service by trying to choose the same route. It is easy to see that this game has
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Mixed Strategy Nash Equilibrium
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Mixed Strategy Nash Equilibrium

Quiz
If one player can only choose Rock and Paper, what is the best
strategy for the other player?
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Advanced Reading

Games with no Nash equilibria [AGT Chapter 1.3.5]
Correlated Equilibrium [AGT Chapter 1.3.6]

17 / 17


	Recap
	Basic Concepts
	Classical Games
	Solution Concepts


