CS243: Introduction to Algorithmic Game Theory

Week 1.2, Basic Concepts (Dengji ZHAO)

SIST, ShanghaiTech University, China

(ロ)
(日)

Outline

Announcements

Recap: What is Game Theory

 Game theory is the study of mathematical models of conflict and cooperation between intelligent rational decision-makers [von Neumann and Morgenstern 1944].

- Extensive form: Go, poker
- Normal form: rock-paper-scissors
- Cooperative game: coordination games

Recap: What is Game Theory

 Game theory is the study of mathematical models of conflict and cooperation between intelligent rational decision-makers [von Neumann and Morgenstern 1944].

Mechanism Design (Reverse Game Theory)

Mechanism Design is to answer...

Question

How to design a mechanism/game, toward desired objectives, in strategic settings?

- Roger B. Myerson (born March 29, 1951, University of Chicago, US)
 - Nobel Prize for economics (2007), for "having laid the foundations of mechanism design theory."
 - Eleven game-theorists have won the economics Nobel Prize.

When Game Theory Meets CS?

 Algorithmic Game Theory is an area in the intersection of game theory and algorithm design, whose objective is to design algorithms in strategic environments [Nisan et al. 2007].

Algorithmic Game Theory Edited by Noam Nisan, Tim Boughgarden, Éva Tardos, and Vijay V. Vazirani Foreword by Christos H. Papadimitriou

- Computing in Games: algorithms for computing equilibria
- Algorithmic Mechanism Design: design games that have both good game-theoretical and algorithmic properties

۰.

When Game Theory Meets CS?

- Algorithmic Game Theory is an area in the intersection of game theory and algorithm design, whose objective is to design algorithms in strategic environments [Nisan et al. 2007].
- It is multidisciplinary:
 - Artificial Intelligence \rightarrow Multi-agent Systems \rightarrow Algorithmic Game Theory
 - Economics
 - Theoretical Computer Science

Algorithmic Game Theory in Artificial Intelligence

- Algorithmic Game Theory research in AI (multi-agent systems):
 - Game Playing: computation challenge, AlphaGo, poker
 - Social Choice: preferences aggregation, voting, prediction
 - Mechanism Design: the allocation of scarce resources (security games), Ad auctions, online auctions, false-name-proof mechanisms (Makoto Yokoo)
- IJCAI Computers and Thought Award: 5 out of the 12 winners (1999-2017) had worked on AGT, Nick Jennings (1999), Tuomas Sandholm (2003), Peter Stone (2007), Vice Conitzer (2011), Ariel Procaccia (2015).

Outline

- Classical Games
- Solution Concepts

Prisoners' Dilemma

- Two players: P1 and P2
- Strategies: Confess, Silent
- Outcomes: number of years in prison

Battle of the Sexes

- Two players: Girl, Boy
- Strategies: Baseball (B), Softball (S)
- Outcomes: payoffs/benefits/utilities

Simultaneous Move Game

- A set of n players
- Each player *i* has a set of strategies S_i
- Let s = (s₁, ..., s_n) be the vector of strategies selected by the *n* players. Also let s = (s_i, s_{-i}).
- Let $S = \prod_i S_i$ be the strategy vector space of all players.
- Each s ∈ S determines the outcome for each player, denote u_i(s) the utility of player i under s.

Dominant Strategy

Definition

A strategy $s_i \in S_i$ is a dominant strategy for player *i*, if for all $s' \in S$, we have that $u_i(s_i, s'_{-i}) \ge u_i(s'_i, s'_{-i})$

Definition

A strategy vector $s \in S$ is a dominant strategy equilibrium, if for each player *i*, and each alternate strategy vector $s' \in S$, we have that $u_i(s_i, s'_{-i}) \ge u_i(s'_i, s'_{-i})$

Dominant Strategy

Definition

A strategy $s_i \in S_i$ is a dominant strategy for player *i*, if for all $s' \in S$, we have that $u_i(s_i, s'_{-i}) \ge u_i(s'_i, s'_{-i})$

Definition

A strategy vector $s \in S$ is a dominant strategy equilibrium, if for each player *i*, and each alternate strategy vector $s' \in S$, we have that $u_i(s_i, s'_{-i}) \ge u_i(s'_i, s'_{-i})$

Any dominant strategy equilibrium in Prisoners' Dilemma?

Dominant Strategy

Definition

A strategy $s_i \in S_i$ is a dominant strategy for player *i*, if for all $s' \in S$, we have that $u_i(s_i, s'_{-i}) \ge u_i(s'_i, s'_{-i})$

Definition

A strategy vector $s \in S$ is a dominant strategy equilibrium, if for each player *i*, and each alternate strategy vector $s' \in S$, we have that $u_i(s_i, s'_{-i}) \ge u_i(s'_i, s'_{-i})$

Any dominant strategy equilibrium in Battle of the Sexes?

Nash Equilibrium

Definition

A strategy vector $s \in S$ is said to be a Nash equilibrium if for all players *i* and each alternate strategy $s'_i \in S_i$, we have that

$$u_i(s_i, s_{-i}) \geq u_i(s'_i, s_{-i})$$

Nash Equilibrium

Definition

A strategy vector $s \in S$ is said to be a Nash equilibrium if for all players *i* and each alternate strategy $s'_i \in S_i$, we have that

 $u_i(s_i, s_{-i}) \geq u_i(s'_i, s_{-i})$

• What is the difference between *Dominant Strategy Equilibrium* and *Nash Equilibrium*?

Nash Equilibrium

Definition

A strategy vector $s \in S$ is said to be a Nash equilibrium if for all players *i* and each alternate strategy $s'_i \in S_i$, we have that

 $u_i(s_i, s_{-i}) \geq u_i(s'_i, s_{-i})$

• What is the difference between *Dominant Strategy Equilibrium* and *Nash Equilibrium*?

Definition

A strategy vector $s \in S$ is a dominant strategy equilibrium, if for each player *i*, and each alternate strategy vector $s' \in S$, we have that

 $u_i(s_i, s'_{-i}) \geq u_i(s'_i, s'_{-i})$

Nash Equilibrium

Definition

A strategy vector $s \in S$ is said to be a Nash equilibrium if for all players *i* and each alternate strategy $s'_i \in S_i$, we have that

$$u_i(s_i, s_{-i}) \geq u_i(s'_i, s_{-i})$$

Any Nash equilibrium in Prisoners' Dilemma?

13/17

Nash Equilibrium

Definition

A strategy vector $s \in S$ is said to be a Nash equilibrium if for all players *i* and each alternate strategy $s'_i \in S_i$, we have that

 $u_i(s_i, s_{-i}) \geq u_i(s'_i, s_{-i})$

Any Nash equilibrium in Battle of the Sexes?

13/17

Another Game: Matching Pennies

- Two players: 1, 2
- Strategies: Head (H), Tail (T)
- Outcomes: the row player (1) wins if the two pennies match, while the column player wins if they do not match

Another Game: Matching Pennies

- Two players: 1, 2
- Strategies: Head (H), Tail (T)
- Outcomes: the row player (1) wins if the two pennies match, while the column player wins if they do not match
- Any dominant strategy or Nash equilibrium?

Mixed Strategies

Definition

Each player *i* picks a probability distribution p_i over his set of possible strategies S_i , such a choice is called a mixed strategy.

- Given a player *i*'s probability distribution choice p_i over S_i , let $p_i(s_i)$ be the probability to choose strategy s_i , we have $\sum_{s_i \in S_i} p_i(s_i) = 1$.
- Assume that players are risk-neutral; that is, they act to maximize the expected payoff.

Mixed Strategy Nash Equilibrium

- Two players: 1, 2
- Strategies: Head (H), Tail (T)
- Outcomes: the row player (1) wins if the two pennies match, while the column player wins if they do not match
- If player 1 uses mixed strategy
 p₁(H) = p₁(T) = 0.5, what is the best strategy for player 2?

Mixed Strategy Nash Equilibrium

Mixed Strategy Nash Equilibrium

Quiz

If one player can only choose Rock and Paper, what is the best strategy for the other player?

Advanced Reading

- Games with no Nash equilibria [AGT Chapter 1.3.5]
- Correlated Equilibrium [AGT Chapter 1.3.6]