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Recap: Coalitional/Cooperative Game

A set of agents N.
Each subset of agents (coalition) S ⊆ N cooperate
together can generate some value v(S) ∈ R. Assume
v(∅) = 0. N is called grand coalition. v : 2N → R is called
the characteristic function of the game.
The possible outcomes of the game is defined by
V (S) = {x ∈ RS :

∑
i∈S xi ≤ v(S)}.
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Recap: Core and Shapley Value

Definition (Core)

The core of the coalitional game (N, v) is a set of vectors
x ∈ RN such that x is efficient and ∀S⊆N

∑
i∈S xi ≥ v(S).

Definition (Shapley Value)

Given a coalitional game (N, v), the Shapley value of each
player i is:

φi(v) =
∑

S⊆N\{i}

|S|!(n − |S| − 1)!

n!
(v(S ∪ {i})− v(S))
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Recap: Cost Sharing

Definition
A cost sharing game (N, c) is defined by

a set of n agents N.
a cost function c : 2N → R and assume c(∅) = 0.
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Figure 15.1. An example of the facility location game.

value generated by a coalition can be divided in an arbitrary way among the agents in S.
In other words, a TU game is defined by specifying a function v: 2A !→ R, which gives
the value v(S) ∈ R generated by each coalition S. We assume v(∅) = 0. The set of all
possible outcomes in such a game is defined as V (S) = {x ∈ RS:

∑
i∈S xi ≤ v(S)}.

The notion of a cooperative game was first proposed by von Neumann and
Morgenstern. This notion seeks to abstract away all other aspects of the game ex-
cept the combinatorial aspect of the coalitions that can form. This is in contrast with
noncooperative games, where the focus is on the set of choices (moves) available to
each agent.

Note that in the definition of a cooperative game, we did not restrict the values to
be nonnegative.1 In fact, the case that all values are nonpositive is the focus of this
chapter, as it corresponds to the problem of sharing the cost of a service among those
who receive the service (this is by taking the value to be the negative of the cost). Again,
the cost-sharing problem can be studied in both the TU and the NTU models. The TU
model applies to settings where, for example, a service provider incurs some (monetary)
cost c(S) in building a network that connects a set S of customers to the Internet, and
needs to divide this cost among customers in S. In practice, the cost function c is often
defined by solving a combinatorial optimization problem. One example, which we will
use throughout the chapter, is the facility location game defined below.

Definition 15.1 In the facility location game, we are given a set A of agents
(also known as cities, clients, or demand points), a set F of facilities, a facility
opening cost fi for every facility i ∈ F , and a distance dij between every pair
(i, j ) of points in A ∪ F indicating the cost of connecting j to i. We assume
that the distances come from a metric space; i.e., they are symmetric and obey
the triangle inequality. For a set S ⊆ A of agents, the cost of this set is defined
as the minimum cost of opening a set of facilities and connecting every agent
in S to an open facility. More precisely, the cost function c is defined by c(S) =
minF ′⊆F {

∑
i∈F ′ fi +

∑
j∈S mini∈F ′ dij }.

Example 15.2 Figure 15.1 shows an instance of the facility location game with
3 agents {a, b, c} and 2 facilities {1, 2}. The distances between some pairs are
marked in the figure, and other distances can be calculated using the triangle

1 If all values are nonnegative, the problem is called a surplus sharing problem.

c({a}) = 4, c({b}) = 3, c({c}) = 3
c({a,b}) = 6, c({b, c}) = 4, c({a, c}) = 7, c({a,b, c}) = 8
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Cake Cutting

Cake Cutting
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Cardinal Preferences

A divisible resource C, say a cake.
A set of n players to share/divide.
Each player has valuation function vi , which gives a value
for each subset of C. We assume vi is additive.

Question
How to divide the resource fairly?

6 / 17



Fairness

Proportionality Each player receives a piece that he values as
at least 1/n of the value of the entire cake.

Envy-freeness Each player receives a piece that he values at
least as much as every other piece.

Question: Does envy-freeness implies proportionality?
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A Cake Cutting Procedure: Divide and Choose

Two person share one cake.
One person (the cutter) cuts the
cake into two pieces.
The other person chooses one
(the chooser).
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A Cake Cutting Procedure: Divide and Choose

Two person share one cake.
One person (the cutter) cuts the
cake into two pieces.
The other person chooses one
(the chooser).

Question
What is the best strategy for the
cutter?
Does it satisfy proportionality?
Does it satisfy envy-freeness?
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Proportional Cake Cutting: Last Diminisher

Question
How to extend Divide and Choose to more than two person
settings?

The players being ranged A, B, C, ... N.
A cuts from the cake an arbitrary part.
B has now the right, but is not obliged, to diminish the slice
cut off.
Whatever B does, C has the right (without obligation) to
diminish still the already diminished (or not diminished)
slice, and so on up to N.
The rule obliges the "last diminisher" to take as his part the
slice he was the last to touch.
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Proportional Cake Cutting: Last Diminisher

Question
Does Last Diminisher satisfy proportionality?
Does Last Diminisher satisfy envy-freeness?
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Proportional Cake Cutting: Moving-knife Protocol

(Proposed by Lester Dubins and Edwin Spanier in 1961.)
The cake: interval [0,1].
n players 1, 2, ..., n and a refree.

Moving-knife Protocol:
Referee starts a knife at 0 and moves the knife to the right.
Repeat: When the piece to the left of the knife is worth 1/n
to a player, the player shouts "stop", receives the piece,
and exits.
When only one player remains, she gets the remaining
piece.

Complexity of moving-knife protocol: Θ(n2)
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Proportional Cake Cutting: Moving-knife Protocol

Question
Does Moving-knife protocol satisfy proportionality?
Does Moving-knife protocol satisfy envy-freeness?
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Proportional Cake Cutting: Even Paz

(Proposed by S. Even and A. Paz, in 1963.)
Input:

A piece of cake [x , y ].
n agents. (Assume n = 2k for simplicity)

Recursive procedure:
If n = 1, give [x , y ] to the single agent.
Otherwise:

Each agent mark a point z such that v([x , z]) = v([z, y ]).
Let z∗ be the (n/2)-th mark from the left.
Recurse on [x , z∗] with the left n/2 agents, and on [z∗, y ]
with the right n/2 agents.
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Proportional Cake Cutting: Even Paz

Even Paz protocol uses a divide-and-conquer strategy, it is
possible to achieve a division in time O(n log n).

Theorem
The Even Paz protocol produces a proportional allocation.

Theorem
Any protocol returning a proportional allocation needs Ω(n log
n) queries. [Edmonds and Pruhs, 2006]
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Envy-free Cake Cutting

A query: either asks an agent her value of some piece, or asks
her to cut a piece that her valuation is some value.

n = 2 agents: 2 queries (Divide and Choose).
n = 3 agents: 14 queries (Selfridge and Conway, 1960).
n = 4 agents: 171 queries (Amanatidis et al., 2018).

Theorem

Any protocol for finding an envy-free allocation requires Ω(n2)
queries.
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Envy-free Cake Cutting: Selfridge Conway procedure

Question
How to get an envy-free allocation among 3 players?

Stage 1:
P1 divides the cake into three pieces he considers of equal
size.
Let A be the largest piece according to P2.
P2 trims A into A1 such that it has the same size as the
second largest. Let the trimming piece be A2.

If P2 thinks that the two largest parts are equal, then
players chooses a part in order: P3,P2,P1.
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Envy-free Cake Cutting: Selfridge Conway procedure

Stage 2:
P3 chooses a piece among A1 and the two other pieces.
P2 chooses a piece with the limitation that if P3 didn’t
choose A1, he must choose it.
P1 chooses the last piece leaving just the trimmings A2 to
be divided.

A1 has been chosen by either P2 or P3, let the player who
chose it PA and the other player PB.

Stage 3:
PB cuts A2 into three equal pieces.
Each of players choose one piece in order: PA,P1,PB.
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Advanced Reading

AGT Chapter 10.2
Computational Social Choice by F. Brandt, V. Conitzer and
U. Endriss
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