CS243: Introduction to Algorithmic Game Theory

Cooperative Games and Cost Sharing (Dengji ZHAO)

SIST, ShanghaiTech University, China

<ロ>

<ロ>

<1/9

Coalitional/Cooperative Game

- A set of agents *N*.
- Each subset of agents (coalition) S ⊆ N cooperate together can generate some value v(S) ∈ ℝ. Assume v(Ø) = 0. N is called grand coalition. v : 2^N → ℝ is called the characteristic function of the game. v is often assumed to be monotonic: S ⊆ T ⇒ v(S) ≤ v(T).
- The possible outcomes of the game is defined by $V(S) = \{x \in \mathbb{R}^S : \sum_{i \in S} x_i \le v(S)\}.$

Example

• Three agents $\{1, 2, 3\}$.

•
$$v(\{1\}) = v(\{2\}) = v(\{3\}) = 1;$$

 $v(\{1,2\}) = v(\{1,3\}) = v(\{2,3\}) = 2; v(\{1,2,3\}) = 3.$

Core

Definition

For the grand coalition *N*, the allocation vector $x \in \mathbb{R}^N$ satisfy: Efficiency if $\sum_{i \in N} x_i = v(N)$. Individual Rationality if $\forall_{i \in N} x_i \ge v(\{i\})$.

Definition (Core)

The core of the coalitional game (N, v) is a set of vectors $x \in \mathbb{R}^N$ such that x is efficient and $\forall_{S \subseteq N} \sum_{i \in S} x_i \ge v(S)$.

Shapley Value: a Fair Distribution of Payoffs

Given a coalitional game (N, v), the Shapley value of each player *i* is:

$$\phi_i(\mathbf{v}) = \sum_{\mathbf{S} \subseteq \mathbf{N} \setminus \{i\}} \frac{|\mathbf{S}|!(\mathbf{n} - |\mathbf{S}| - 1)!}{\mathbf{n}!} (\mathbf{v}(\mathbf{S} \cup \{i\}) - \mathbf{v}(\mathbf{S}))$$

2012 Nobel Memorial Prize in Economic Sciences

・ロ・・ (四・・ (日・・ (日・))

Shapley Value: a Fair Distribution of Payoffs

Given a coalitional game (N, v), the Shapley value of each player *i* is:

$$\phi_i(\mathbf{v}) = \sum_{\mathbf{S} \subseteq \mathbf{N} \setminus \{i\}} \frac{|\mathbf{S}|!(\mathbf{n} - |\mathbf{S}| - 1)!}{\mathbf{n}!} (\mathbf{v}(\mathbf{S} \cup \{i\}) - \mathbf{v}(\mathbf{S}))$$

Calculate the Shapley value for the following game:

- Three agents {1,2,3}.
- v(S) = 1 if $S \in \{\{1,3\}, \{2,3\}, \{1,2,3\}\}$, otherwise v(S) = 0.

• $\phi_1(v) = \phi_2(v) = \frac{1}{6}$ and $\phi_3(v) = \frac{2}{3}$.

Properties of Shapley Value

- Efficiency: $\sum_{i \in N} \phi_i(v) = v(N)$.
- **Symmetry**: If *i* and *j* are two players who are equivalent in the sense that $v(S \cup \{i\}) = v(S \cup \{j\})$ for all $S \subseteq N$ s.t. $i, j \notin S$, then $\phi_i(v) = \phi_j(v)$.
- Linearity: $\phi_i(\mathbf{v} + \mathbf{w}) = \phi_i(\mathbf{v}) + \phi_i(\mathbf{w})$.
- Zero player (null player): φ_i(v) = 0 if v(S ∪ {i}) = v(S) for all S ⊆ N.

Properties of Shapley Value

- Efficiency: $\sum_{i \in N} \phi_i(v) = v(N)$.
- **Symmetry**: If *i* and *j* are two players who are equivalent in the sense that $v(S \cup \{i\}) = v(S \cup \{j\})$ for all $S \subseteq N$ s.t. $i, j \notin S$, then $\phi_i(v) = \phi_j(v)$.
- Linearity: $\phi_i(\mathbf{v} + \mathbf{w}) = \phi_i(\mathbf{v}) + \phi_i(\mathbf{w})$.
- Zero player (null player): $\phi_i(v) = 0$ if $v(S \cup \{i\}) = v(S)$ for all $S \subseteq N$.

Question

Is the Shapley value in the core? [advanced reading]

Cost Sharing

In the above coalitional game (N, v), we assumed that $v(S) \ge 0$, it is possible that $v(S) \le 0$ (which becomes a cost sharing game).

Definition

A cost sharing game (N, c) is defined by

- a set of *n* agents *N*.
- a cost function $c: 2^N \to \mathbb{R}_+$ and assume $c(\emptyset) = 0$.

Cost Sharing

Figure 15.1. An example of the facility location game.

•
$$c(\{a\}) = 4, c(\{b\}) = 3, c(\{c\}) = 3$$

• $c(\{a,b\}) = 6, c(\{b,c\}) = 4, c(\{a,c\}) = 7, c(\{a,b,c\}) = 8$

<ロ> (四) (四) (日) (日) (日)

Core of Cost Sharing

Definition (Core)

A vector $\alpha \in \mathbb{R}^N$ is in the core of a cost sharing game (N, c) if

•
$$\sum_{i\in N} \alpha_i = c(N)$$

•
$$\forall_{S \subseteq N} \sum_{j \in S} \alpha_j \leq c(S)$$

Core of Cost Sharing

Questions:

- Is (4,2,2) in the core of the following game?
- Is (4,1,3) in the core of the following game?

Figure 15.1. An example of the facility location game.

• $c(\{a\}) = 4, c(\{b\}) = 3, c(\{c\}) = 3$ • $c(\{a,b\}) = 6, c(\{b,c\}) = 4, c(\{a,c\}) = 7, c(\{a,b,c\}) = 8$

(a) < (a) < (b) < (b)

Advanced Reading

• AGT Chapter 15: Cost Sharing.